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Abstract

A data structure is a repository of information; the goal is to organize the data so that it

needs less storage (space) and so that a request for information (query) can be processed

quickly. A geometric data structure handles data which have locations attached (e.g. ad-

dresses of fire stations in the state of Massachusetts). Geometric data structures have be-

come a pervasive and integral part of life, and can be queried to produce driving directions

or the name of the nearest Italian restaurant. Since the space and query time of a data

structure depend upon the type of queries it needs to support, it is important to study which

tools and techniques are suitable for which data structures. The ongoing quest for better

data structures sometimes results in improved methods and sometimes results in entirely

new techniques. The goal is to determine optimal data structures with the best possible

performance.

Given a set S of n points in Rd, a data structure for geometric range searching may

report: whether the query range contains any point (emptiness), the number of points in

the range (counting), all points in the range (reporting), or the minimum/maximum point

according to some criterion (optimization). A query range can be a circle, a halfspace, an

axis-parallel rectangle, a simplex or some other geometric object. Geometric range search-

ing is fundamental to computer science, and is a well-studied problem. There have been

two themes to the study of geometric range searching: creating better data structures (up-

per bounds) for the many variants of range searching and proving lower bounds in different

models of computation in order to understand which range searching problems are difficult

e.g. halfspace counting has been shown to be much harder than halfspace emptiness.

In this thesis, we prove new lower bounds for simplex emptiness queries in the partition

graph model. Our lower bounds are based on the lower bounds provided by Erickson [40]
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for online hyperplane emptiness problem in the partition graph model, and are within a

polylogarithmic factor of the optimal in the plane. Previously known lower bounds for

simplex emptiness were based on the rather weak lower bounds due to Erickson [40] for

halfspace emptiness in the partition graph model (only trivial lower bounds were known

for 2 ≤ d ≤ 4). Our lower bounds automatically imply lower bounds for simplex range

reporting, where a data structure needs to report all r points contained in the query simplex.

Chazelle and Rosenberg [34] had previously established lower bounds for simplex range

reporting in the pointer machine model, but unfortunately their lower bounds only hold

for the case when r is at least nδ for some δ > 0. Our lower bounds apply to host of

other important problems such as point-inclusion in union of slabs, segment intersection

searching, implicit point location, line-nearest neighbor and segment dragging queries etc.

Although these lower bounds make it impossible to create efficient data structures for

various geometric problems, these data structures are not used in isolation but by specific al-

gorithms. These algorithms may generate a sequence of queries with some special structure

making it possible to beat the lower bounds by designing data structures specific to these

algorithms. For example, Paterson and Yao’s [64] classical randomized auto-partition algo-

rithm can be implemented using a dynamic ray shooting data structure for disjoint polygo-

nal obstacles, yielding a runtime of O(n
3
2 lg n). Since the algorithm does not “really need”

a general ray shooting data structure, we were able to improve the runtime of the algorithm

to O(n lg2 n) by developing a new data structure for ray shooting-and-insertion in the free

space between disjoint polygonal obstacles. For a ray shooting-and-insertion query, the

ray starts at the boundary of some obstacle, and the portion of the ray between the starting

point and the first obstacle hit is inserted permanently as a new obstacle. The data structure

uses O(n lg n) space and preprocessing time, and it supports m successive ray shooting-

and-insertion queries (for sufficiently large m), in O(n lg2 n + m lgm) total time. For

the auto-partitioning algorithm, we perform m = O(n lg n) shooting-and-insertion queries

yielding a runtime of O(n lg2 n)

Finally, we present a useful tool for building data structures—convex partitions with

2-edge connected dual graphs. Convex partitions have proved to be very useful for creating

efficient data structures especially in computer graphics. Given a set of convex polygonal

obstacles and a bounding box, we may think of the bounding box as a simple polygon
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and the obstacles as polygonal holes. Then the problem of creating a convex partition

becomes that of decomposing the simple polygon with holes into convex parts. Convex

polygonal decomposition has received considerable attention in the field of computational

geometry. The focus has been to produce a decomposition with as few convex parts as

possible. Lingas [59] showed that finding the minimum convex decomposition is NP-hard

for polygons with holes. While minimum convex decomposition is desirable, it is not the

only criterion for the goodness of a convex partition. Another criterion for the quality of a

convex partition might be some property of its dual graph. In this thesis, we give a convex

partitioning scheme such that the dual graph of the produced convex partition is 2-edge

connected.

The take-away message for the thesis is that we need to create specialized data struc-

tures. The idea is not new, and has been pursued before in computer science, however,

the existence of severe lower bounds for various geometric problems make the notion even

more appealing.
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Chapter 1

Introduction

Range searching data structures are some of the most fundamental data structures in com-

putational geometry. These data structures have applications in graphics, geographic infor-

mation systems, and spatial data bases. The goal of a range searching data structure is to

preprocess a set of n points in Rd so that questions about a query range can be answered

quickly. Although the kind of query range may depend upon the application, halfspaces,

axis-parallel rectangles and simplicies are some of the more important query ranges in

practice. We focus on the case where the range is a full dimensional simplex in Euclidean

d-space Rd, which is the basic building block for queries on many other polyhedral objects.

Simplex range searching is an umbrella term that includes simplex emptiness queries

asking whether there is any point in the query simplex, simplex reporting queries asking

for all points in the query simplex, and simplex counting asking for the number of points. In

the weighted version of range counting, each point is assigned a weight from a semigroup

(group), and a range semigroup (group) query asks for the semigroup (group) sum of the

weights for points in the query range.

Simplex range searching is a well-studied problem in computational geometry and

believed to be “almost completely solved” [1]. Chazelle [27] established quasi-optimal

(within a polylogarithmic factor of the optimal) lower bounds for simplex counting queries

in the semigroup arithmetic model. For range reporting, Chazelle and Rosenberg [34]

established the quasi-optimal lower bounds for simplex reporting in the pointer machine

model albeit for the case the number of points being reported is at least nδ points for some

1
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δ > 0. However, for simplex range emptiness there is a huge gap between known upper and

lower bounds. In this thesis we bridge this gap by improving the lower bounds on simplex

emptiness.

Although the lower bounds presented for these geometric problems are very severe and

thus there is no hope for efficient data structures. However, these geometric data structures

do not exist in isolation but are used by applications (algorithms). These algorithm may

have some special structure that we can exploit to get around these lower bounds. For

example, Paterson and Yao’s [64] classical randomized auto-partition algorithm can be

implemented using a dynamic ray shooting data structure yielding a runtime of O(n
3
2 lg n).

Since the algorithm does not “really need” a general ray shooting data structure, therefore,

we were able to improve the runtime of the algorithm to O(n lg2 n) by developing a new

data structure for ray shooting-and-insertion in the free space between disjoint polygonal

obstacles.

Here we give an overview of the contributions of this thesis.

1.1 Lower Bounds for Simplex Emptiness

The best known upper bounds for simplex range searching are due to Matoušek [60] in

the RAM model of computation. The data structure is based on the simplicial partitioning

method and can support simplex counting in O( n

m
1
d

lgd+1(m
n

)) time while using m space.

The preprocessing time has recently been improved by Chan [23]. The upper bounds for

simplex counting immediately apply for simplex emptiness. While the data structures

for simplex counting are optimal within a polylogarithmic factor in the semigroup arith-

metic model [27], the lower bounds for simplex emptiness are far from optimal. Previously

known lower bounds for simplex emptiness are rather weak; derived from halfspace empti-

ness queries through a lifting method for d ≥ 5. Only trivial lower bounds were known for

dimensions 2 ≤ d ≤ 4.

We establish new lower bounds for the simplex emptiness queries in Rd in a variant of

the partition graph model introduced by Erickson [40] for hyperplane emptiness queries.

We reduce hyperplane emptiness to simplex emptiness. A data structure for simplex empti-

ness in the polyhedral partition graph model must spend Ω( n1− 1
d

polylogn
) time answering a query

2
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when the preprocessing is restricted to be O(n polylog n). These lower bounds are quasi-

optimal (within a polylogarithmic factor of the optimal), and hold in the worst case. We

also prove weaker lower bounds in the general partition graph model, with no restriction

on preprocessing, that hold in the average case. Our lower bounds imply lower bounds for

simplex range reporting in the polyhedral partition graph model irrespective of the number

of points being reported. Previous lower bounds for simplex range reporting hold only for

queries containing at least nδ points for some δ > 0. We also reduce simplex emptiness

to various other geometric problems such as segment intersection searching, implicit point

location, , line-nearest neighbor, segment dragging, and point-inclusion in a union of slabs,

thus establishing the lower bounds for these problems as well.

1.2 Data Structures for the Restricted Simplex Queries

Chazelle et al. [32] gave a linear-space data structure for halfplane range reporting that

achieves O(lg n+ r) query time, where r is the number of points being reported. The data

structure maintains nested (peeling) convex layers for the given point set. Similarly for

halfplane emptiness queries, a linear-space data structure that maintains the convex hull of

the given point set allows the queries to be answered in O(lg n) time.

We consider the restricted version of simplex emptiness and reporting in the plane,

where each query simplex contains the origin. The restricted version of simplex range

searching behaves similar to halfplane range searching: for range emptiness and reporting

we can create near-linear space (O(n1+ε)) data structures for any fixed ε > 0, with polylog-

arithmic query times. For the restricted simplex range counting queries the lower bounds

for the halfplane range counting queries continue to hold: a near-linear space data structure

cannot support counting queries in polylogarithmic time.

1.3 Data Structures for Permanent Ray Shooting

Ray shooting data structures are a classical core component of computational geometry.

They store a set of preprocessed objects in space in such a way that one can efficiently find

the first object hit by a query ray. Geometric algorithms often rely on a ray shooting data
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structure, where the result of each query may affect the course of the algorithm and modify

the data. Successive ray shooting queries are responsible for a bottleneck in the runtime

of some geometric algorithms, which recursively partition the plane along rays (along the

portion of rays between their starting points and the first obstacles hit, to be precise).

We present a data structure for ray shooting-and-insertion queries among disjoint polyg-

onal obstacles lying in a bounding box B in the plane. Each query is a point p on the

boundary of an obstacle and a direction dp; we report the first point q where the the ray em-

anating from p in direction dp hits an obstacle or the bounding box (ray shooting) and insert

the segment pq (insertion) as a new obstacle edge . If the input polygons have a total of n

vertices, our data structure usesO(n log n) preprocessing time, and it supportsm shooting-

and-insertion queries inO((n+m) log2 n+m logm) total time andO((n+m) log(n+m))

space. We present two applications for our data structure: efficient implementation of auto-

partitioning and convex partitioning algorithms. Our data structure improves the runtime

of Paterson and Yao’s [64] classical randomized auto-partition algorithm from O(n
3
2 lg n)

to O(n lg2 n).

A simple polygon with n vertices can be preprocessed in O(n) time to answer ray

shooting queries in O(log n) time, using either a balanced geodesic triangulation [30] or

a Steiner triangulation [48]. However, the free space between disjoint polygonal obsta-

cles with a total of n vertices (e.g. n
2

disjoint line segments) cannot be handled as easily.

The best ray shooting data structures can answer a query in O( n√
m

) time (ignoring poly-

logarithmic factors) using O(m) space and preprocessing, based on range searching data

structures via parametric search. That is, a query takes O(
√
n) time on the average using

O(n) space. The biggest challenge in the design of our data structure was bridging the

gap between the O(log n) query time for ray shooting in a simple polygon and the O(
√
n)

query time among disjoint obstacles with n vertices. Our data structure is based on two

tools: geometric partition trees in two dimensions and geodesic hulls. Here we briefly de-

scribe our data structure. In each convex cell of the geometric partition tree, we maintain

the geodesic hull of all reflex vertices; a vertex is reflex if it forms a reflex angle in the free

space. The geodesic hull separates the obstacles lying in the interior of the cell from all

other obstacles. The geodesic hulls form a nested structure of depth lg n that consists of

weakly simple polygons and creates a tiling of the free space. Each tile is a simple polygon
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that can easily be processed for fast ray shooting queries. A ray shooting query can be

answered by tracing the query ray along these polygons.

The use of geodesic hulls allows us to control the total complexity of m ray insertion

queries. Basically, a query ray intersects the boundary of a geodesic hull only if it partitions

the set of reflex vertices into two nonempty subsets. Since a set of k points can recursively

be partitioned into nonempty subsets at most k − 1 times, we can charge the total number

intersections between rays and geodesic hulls to the number of such partition steps.

1.4 Convex Partitions with 2-Edge Connected Dual Graphs

Convex partitioning decomposes a complex geometric object into convex parts. It is a use-

ful tool in computer graphics, motion planning, and geometric modeling. Convex polyg-

onal decomposition has received considerable attention in the field of computational ge-

ometry. The focus has often been to produce a decomposition with as few convex parts as

possible. Lingas [59] showed that finding the minimum convex decomposition (decompos-

ing the polygon into the fewest number of convex parts) is NP-hard for polygons with holes.

For polygons without holes, however, minimum convex decompositions can be computed

in polynomial time [29, 54]—see [53] for a survey on polygonal decomposition.

While minimum convex decomposition is desirable, it is not the only criterion for the

goodness of a convex partition (decomposition). In fact, the measure of the quality of a

convex partition can be specific to the application domain. In Lien’s and Amato’s work

on approximate convex decomposition [58] with applications in skeleton extraction, the

goal is to produce an approximate (not all cells are convex) convex partition that highlights

salient features. In the equitable convex partitioning problem, all convex cells are required

to have the same value of some measure e.g. the same number of red and blues points [52],

or the same area [22] (with application to vehicle routing).

Another criterion for the quality of a convex partition might be some property of its dual

graph (the definition of dual graph varies from application to application). A dual graph

might represent a communication network whose desired characteristic is fault tolerance

(no single point of failure). We consider the problem of creating convex partitions with

2-edge connected dual graphs.
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For a finite set S of disjoint convex polygonal obstacles in the plane R2, a convex

partition of the free space R2 \ (
⋃
S) is a set C of open convex regions (called cells) such

that the cells are pairwise disjoint and their closures cover the entire free space. Since every

vertex of an obstacle is a reflex vertex of the free space, it must be incident to at least two

cells. A dual graph of the convex partition is obtained by creating a node for each cell in C,

and adding an edge between two nodes of the dual graph if the two corresponding convex

cell share an obstacle vertex.

It is straight forward to construct an arbitrary convex partition for a set of convex poly-

gons as follows. Let V denote the set of vertices of the obstacles; each vertex of a convex

obstacles is reflex. Let π be a permutation on V . Process the vertices in the order π. For

a vertex v ∈ V , draw a directed line segment (called extension) that starts from the vertex

along the angle bisector. For a line-segment obstacle, the extension is drawn along the

supporting line. The extension ends when it hits another obstacle, a previous extension, or

infinity (the bounding box). We call this a STRAIGHT-FORWARD convex partition. The

order in which the extensions are drawn determines the convex partition we get.

Aichholzer et al. [7] conjectured for a set of disjoint line segments, there always exists

a STRAIGHT-FORWARD convex partition such that dual graph of the partition is 2-edge

connected. Since there are exponential number of STRAIGHT-FORWARD convex partitions

for a given set of line segments ((2n)! permutations for n segments), it is reasonable to con-

jecture that one of them may have the 2-edge connected dual graph. However, we construct

a counterexample using 16 line segments where no permutation produces a STRAIGHT-

FORWARD convex partition with 2-edge connected dual graph.

Although the conjecture due Aichholzer et al. is not true, it is still possible to cre-

ate convex partitions with 2-edge connected dual graphs. We prove that for every finite

set of disjoint convex polygons in the plane there is a convex partition (not necessarily

STRAIGHT-FORWARD) with 2-edge connected dual graph. The dual graph has the same

number of nodes as in the case of STRAIGHT-FORWARD convex partition.
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1.5 Outline of the Thesis

The thesis is organized as follows: in Chapter 2, we describe our lower bounds for sim-

plex range emptiness. In Chapter 3, we describe data structures for a restricted version of

simplex emptiness that achieve better upper bounds than those possible for normal simplex

emptiness. In Chapter 4, we present a data structure for ray shooting-and-insertion that

improves the runtime of various auto-partitioning and convex partitioning algorithms. In

Chapter 5, we give an algorithm to produce a convex partition of the free space between

disjoint convex obstacles such that the dual graph of the partition is 2-edge connected. We

conclude in Chapter 6.
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Chapter 2

Lower Bounds for Simplex Emptiness

Range searching is one of the most fundamental problems in computational geometry. It

has applications in graphics, geographic information systems, and spatial data bases. The

goal is to preprocess a set of n points in Euclidean d-space Rd into a data structure so that

questions about a query range can be answered quickly. We focus on the case where the

range is a full dimensional simplex in Rd, which is the basic building block for queries

on arbitrary polyhedral objects. Simplex range searching is an umbrella term that includes

simplex emptiness queries asking whether there is any point in the query simplex, simplex

reporting queries asking for all points in the query simplex, and simplex counting asking

for the number of points. In the weighted version of range counting, each point is assigned

a weight from a semigroup (group), and a range semigroup (group) query asks for the semi-

group (group) sum of the weights for points in the query range. See surveys on geometric

range searching by Matoušek [61], and by Agarwal and Erickson [1].

Matoušek [60] showed that in the RAM model of computation, a data structure of size

m can support simplex counting in O( n

m
1
d

lgd+1(m
n

)) time. The space and preprocessing

time has recently been improved by Chan [23]; he gave a randomized method for prepro-

cessing with an expected runtime of O(n polylog n). These upper bounds are fundamen-

tally built on the partition tree technique [78] and the ε-net theory [46]. The upper bounds

for simplex counting immediately apply for simplex emptiness, and for many optimization

variants of simplex range searching (e.g. closest point to a line, etc.) discussed in Sec-

tion 2.7. However, establishing lower bounds is much more challenging. Especially for
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simplex emptiness there is a huge gap between known upper and lower bounds. The dif-

ficultly arises from the fact the models of computation used to establish lower bounds for

simplex range searching are too powerful for the special case of simplex range emptiness.

In this thesis, we establish quasi-optimal lower bounds (within a polylogarithmic factor

of the optimal) on simplex emptiness in the modified partition graph model. Before we

describe the new lower bounds, we discuss various model of computations in Section 2.1.

2.1 Models of Computation

A model of computation is a mathematical abstraction that specifies the allowed operations

(computing steps), and the cost of these operations. A model can be stronger or weaker

depending upon the kind of operations it allows. Once a model of computation has been

specified, we can implement algorithms in it (upper bounds) and study their performance.

We can also prove lower bounds on problems by showing any algorithm in the chosen

model will take a certain number of operations to solve the particular problem. Ideally, we

want to prove the upper bounds in weaker models, and the lower bounds in more powerful

models of computation. One well-known example of a model of computation is the Turing

machine model. The Turing machine model, with an infinite tape (memory) and sequential

access, captures the notion of computability—which problems are solvable (decidable),

however, it is not suitable for studying the performance of an algorithm. The RAM model,

with random access memory, serves better for analyzing the runtime of an algorithm. The

RAM model is very close to reality, hence an algorithm for the RAM model will run on a

real computer (ignoring the issue of finite precision).

One might ask: if we already have a realistic model of computation—the RAM model,

is there any need for a different model of computation? The answer is ‘yes’ because the

purpose of different models is to capture different aspects of computation e.g. a model for

external memory algorithms may focus on data transfers between disk and memory, and

allow CPU operations for free. Moreover, showing lower bounds in the RAM model has the

risk that if one day we are able to implement a more powerful model into a real computer

(say Quantum computers), the lower bounds in the RAM model will become irrelevant.

In this thesis, our focus is on lower bounds for data structures, thus we need a model
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that captures the interaction with the data structure and abstracts away other costs. Data

structures for range searching are fundamental to computer science and have led to devel-

opment of various models of computation of varying strength. For example, the semigroup

arithmetic model was developed to show lower bounds for simplex range counting, but it

is too powerful for range emptiness. Here we briefly discuss the three important models of

computation for geometric range searching: the semigroup arithmetic model, the pointer

machine model, and the partition graph model. Since we establish our lower bounds in the

partition graph model, we give a detailed description of it in Section 2.2.

2.1.1 The Semigroup Arithmetic Model

The semigroup arithmetic model was introduced by Fredman [41] and modified by Yao [79].

The model was developed to prove lower bounds on range counting. In this model each

point is assigned a weight from a semigroup, and a semigroup addition operator is defined.

There is no subtraction operator (unlike for the group model). For example, we can attach a

unit weight with each point and define the semigroup addition operator to be the arithmetic

addition, then a semigroup range query gives the count of the points in the query range.

Weights are not necessarily real numbers. For a range reporting query, we can attach with

every point a singleton containing the label of the point and define the semigroup addition

operator to be the set union.

The data structure consists of a set of precomputed partial sums (semigroup sums of

the subsets of points). The size of the data structure is the number of precomputed partial

sums. A query is answered by performing semigroup additions to compute the sum of the

weights in the query range, and the query time is the minimum number of additions needed.

Chazelle [27] established quasi-optimal (within a polylogarithmic factor of Matoušek’s

upper bounds in the RAM model) lower bounds for simplex counting queries in the semi-

group arithmetic model. The model is too powerful for simplex emptiness; a simplex

emptiness query takes O(1) time in this model, since the query simplex is not empty if we

perform even a single semigroup addition.

As we mentioned earlier, in the group model the weights associated with points come

from a group i.e. subtraction operator is defined as well. Group model is very powerful,
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hence it is very difficult to show lower bounds in this model. The only lower bounds known

in the group model are for orthogonal range searching (see [28, 65]).

2.1.2 The Pointer Machine Model

The pointer machine model was developed by Tarjan [71, 72] by extending Knuth’s linking

automaton [56] to model list-processing problems. The model was later generalized by

Chazelle [26]. The pointer machine model does not allow memory-address arithmetic,

hence it is weaker than the RAM model. However, there exists numerous extensions to the

pure pointer machine model. Here we discuss a powerful variant of the pointer machine

model that allows nondeterminism.

The data structure is a directed graph. There is a fixed root node and each node has

an outdegree 2. The size of the data structure is the number of nodes in the graph. A

query is answered by traversing this graph starting from the root node. The computation to

determine which node to visit next is free of cost (nondeterminism). The query processing

algorithm is only charged for traversing a node. The nodes traversed (“working set”) must

contain the answer to the query, and the query time is the size of this set. For example, for a

simplex emptiness query, if the given query simplex is not empty, then the query algorithm

must visit a node associated with some arbitrary point (witness) inside the query simplex.

Chazelle and Rosenberg [34] established the quasi-optimal lower bounds for simplex

reporting in the (nondeterministic) pointer machine model by showing that a data structure

with O(m) space must spend Ω(n
1−ε

m
1
d

+ r) time to answer a reporting query, where ε > 0

and r is the number of points being reported. However, the lower bounds only hold for

r = Ω(n
1−ε

m
1
d

).

The reason for such restrictive lower bounds is that the (nondeterministic) pointer ma-

chine model is too powerful. One can easily implement a O(n) space data structure that

supports simplex reporting queries in O(r lg n) time by building a balanced binary tree on

the given set of points, then any point in the query simplex can be reported by traversing

at most O(lg n) nodes from the root. For the same reason a simplex emptiness query takes

O(lg n) time in the pointer machine model.
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2.1.3 The Partition Graph Model

The partition graph model was introduced by Erickson [40] for hyperplane emptiness

queries (see also [39]). The data structure is built on a directed acyclic graph, called a

partition graph. There is a fixed root node. Every node has a constant outdegree. Asso-

ciated with every outgoing edge of a node is a partition (a connected region) of Rd. The

regions associated with the outgoing edges of a node, together cover the entire Rd space.

The size of the data structure is the number of edges in the graph. The cost of building the

partition graph is zero, and the cost of preprocessing is the total number of edges traversed

as we store the points in this partition graph. A query is answered by traversing this graph

starting at the root node (details in Section 2.2) and the query time is the number of edges

traversed while answering a query. Any computation done outside the partition graph is

free, however, the answer to any query should be verifiable by a valid query processing

algorithm. Erickson defined two variations of the partition graph model: the polyhedral

and semialgebraic partition graph models, in which the regions are constant-complexity

polyhedra and semialgebraic sets, respectively.

2.2 The Modified Partition Graph Model

We use the partition graph model developed by Erickson [39, 40], and utilize prior bounds

on hyperplane emptiness in this model to achieve new lower bounds for both simplex

emptiness and simplex reporting. The partition graph model was initially developed for

analyzing the data structures for hyperplane emptiness queries, and is very ad hoc in na-

ture. So we adapt the original partition graph model to support data structures for simplex

range queries. Our modification are very similar to what Erickson did to support halfs-

pace emptiness data structures in the partition graph model, thus do not change the model

significantly. For completeness sake, we describe the partition graph model as defined by

Erickson, and then highlight the modifications necessary for simplex range queries.

Every data structure in the partition graph model is based on a partition graph. A

partition graph is a directed acyclic (multi-)graph, with one source, called the root, and

several sinks, called leaves. Associated with each non-leaf node v is a set Rv of regions
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called the query regions, satisfying three conditions.

1. Rv contains at most ∆ query regions, for some constant ∆ ≥ 2.

2. Every query region is a connected subset of Rd.

3. The union of the query regions in Rv is Rd.

The node v has an outgoing edge for each query region in Rv. Thus, the outdegree of

each node is at most ∆. The indegree can be arbitrarily large. In addition, every internal

node v is labeled either a primal node or a dual node, depending on whether its query re-

gionsRv are interpreted as a partition of primal or dual space. The query regions associated

with primal (resp. dual) nodes are called the primal (resp. dual) query regions.

The model does not require the query regions to be disjoint. The query regions are

not required to be convex or semialgebraic, however, a few of Erickson’s results only

hold for the partition graphs with query regions that are constant-complexity polyhedra

or constant-complexity semialgebraic sets. If all the query regions in a partition graph are

constant-complexity polyhedra, it is called a polyhedral partition graph. If all the query

regions are constant-complexity semialgebraic sets (also called Tarski cells), it is called a

semialgebraic partition graph.

In the partition graph model the construction of the partition graph is free of cost, thus

the optimal partition graph can be constructed for any given point set. Once the optimal

partition graph has been built, the set of point S is preprocessed into a data structure (Sec-

tion 2.2.1). A query is answered by searching this partition graph (Section 2.2.2).

2.2.1 Preprocessing in the Partition Graph Model

For each point p ∈ S, we perform a depth-first search of the partition graph using the query

regions to determine which edges to traverse, and we stop when we reach a leaf node.

Whenever we reach a primal node v, we traverse the outgoing edges corresponding to the

query regions in Rv that contain p. Whenever we reach a dual node v, we traverse the

edges corresponding to the query regions in Rv that intersect the dual hyperplane p∗. For

hyperplane emptiness, Erickson stored at each leaf node the subset of points that reached

that leaf node. Here we store a subset at each node except root. For each node v with
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nonzero indegree, we maintain a subset Pv containing the points that reach that node. See

Algorithm 1 below. The cost of preprocessing is the total number of edges traversed for the

point set.

Algorithm 1 PREPROCESS (p)

Let r be the root of the partition tree.
TRAVERSE (p, r)

Algorithm 2 TRAVERSE (p, v)

if v is a primal internal node then
for each outgoing edge (v, w) do

if the region corresponding to (v, w) contains p then
Add p to the subset Pw
TRAVERSE (p, w)

end if
end for

end if
if v is a dual internal node then

for each outgoing edge (v, w) do
if the region corresponding to (v, w) intersects with the hyperplane p∗ then

Add p to the subset Pw
TRAVERSE (p, w)

end if
end for

end if
if v is a leaf then

Add p to the subset Pv
end if

2.2.2 Query Processing in the Partition Graph Model

To answer a simplex query, we use almost the same algorithm we used for preprocessing.

For a simplex q we perform a depth-first search of the partition graph, using the query

regions to determine which edges to traverse. At each primal node we check for the inter-

section of the simplex q with the query region to decide which query regions to traverse.

At a dual node, we traverse the query regions which intersect with the dual of the simplex
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q. For hyperplane emptiness Erickson checked whether the query hyperplane (or dual of

the hyperplane) intersected with a query region.

Algorithm 3 QUERY (q)

Let r be the root of the partition tree.
TRAVERSEQUERY (q, r)

Algorithm 4 TRAVERSEQUERY (q, v)

if v is a primal internal node then
for each outgoing edge (v, w) do

if the region corresponding to (v, w) is contained in q then
Examine the subset Pw

else if the region corresponding to (v, w) overlaps q then
TRAVERSEQUERY (q, w)

end if
end for

end if
if v is a dual internal node then

for each outgoing edge (v, w) do
if the region corresponding to (v, w) contains the dual q∗ then

Examine the subset Pw
else if the region corresponding to (v, w) overlaps the dual q∗ then

TRAVERSEQUERY (q, w)
end if

end for
end if
if v is a leaf then

Examine the subset Pv
end if

A further modification is required for the case when the query region is completely

contained in the query simplex q. In that case query algorithm examines the subset stored

at the node, however, the node is not traversed any further. Whenever the query algorithm

reaches a leaf, it examines the corresponding leaf subset. The output of the query algorithm

is computed from the examined subsets (associated with both the leaves and the internal

nodes). While processing a query, we are not allowed to examine a subset that contains

some point not inside the query simplex. For example, a query simplex is empty iff all the
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examined subsets are empty. The output of a counting query is the size of the union of the

examined subsets. The output of a reporting query is the union of the examined subsets.

See Algorithm 3.The runtime for the query is equal to the number of edges traversed. Since

we can perform any computation on the points in the examined subsets for free—the only

charge is for traversing an edge of the partition graph, the same query algorithm can be used

to answer optimization variants of simplex range searching such as line-nearest neighbor.

2.2.3 Why is the Partition Graph Model Weaker?

There are two restrictions in the partition graph model that makes it weak enough so that

non-trivial lower bounds on range emptiness can be established in this model:

1. An edge is traversed iff the query range overlaps with the geometric region associated

with the edge.

2. The query processing algorithm is not allowed to examine subsets that contain some

point not present in the query range.

2.2.4 Upper Bounds in the Partition Graph Model

The upper bounds for the simplex range searching and various other problems described

in this chapter hold in the polyhedral partition graph model, since Matoušek’s simplicial

partitioning data structure can be implemented in this model (c.f. Section 4.5 of [39]). Very

recently, Chan [23] showed that optimal simplicial partition trees can be in constructed

in O(n polylog n) expected time—satisfying a restriction on preprocessing that Erickson

utilized to prove quasi-optimal lower bounds on hyperplane emptiness.

Here we briefly describe how to convert a data structure DS1 for simplex emptiness

for n points S in Rd in the RAM model to a corresponding data structure DS2 in the

polyhedral partition graph model. Assume the data structure DS1 is the optimal simplicial

partition tree produced by Chan’s randomized algorithm. Hence DS1 is a tree with: a fixed

root node, constant branching factor (outdegree), disjoint partitions (query regions), O(n)

space, O(n lg n) preprocessing, and O(n1− 1
d ) query time with high probability. Each node

in DS1 is associated with a simplex, and stores all points contained in the simplex. For

16



www.manaraa.com

a query simplex q, the emptiness query is answered by starting at the root of DS1, and

recursing into a child node iff q intersects with the simplex associated with the child node.

In case the query simplex q contains the simplex associated with the child node, the point

set stored at the child node is examined but there is no further recursion. The query simplex

q is empty iff all the examined subsets are empty.

For the data structure DS2 in the polyhedral partition graph model, use the same parti-

tioning of the space as in DS1. In the partition graph model computing this partitioning is

free of charge. For each internal node of the partition graph DS2, create a constant number

of dummy outgoing edges whose corresponding regions (again simplicies) cover the space

not covered by the original partition tree DS1. The outdegree of DS2 remains constant,

thus satisfying condition 1 for a valid data structure in the partition graph model. Each

dummy edge has a connected region (simplex) associated with it, and now the regions at

each internal node cover the entire space Rd, hence satisfying the conditions 2 and 3. Since

the query regions associated with each outgoing edge in this partition graph is a a polyhe-

dron, the data structure exists in the polyhedral partition graph model. The size of DS2,

measured as the number of edges, isO(n) because we only added constant number of edges

per each node of DS1.

Now that we have a valid partition graph DS2, preprocess each point p in S using the

Algorithm 1. Each point gets stored at various internal nodes and a leaf node (DS2 is a

tree). Notice that during the preprocessing no point will ever end up at a dummy node.

Thus storage of points in both DS1 and DS2 is exactly the same. The preprocessing for

DS2 is measured as the total number of edges traversed by all points in S. Since each

point is stored at every node it visits (via a unique edge since DS2 is a tree), the cost of

preprocessing can be charged against the total number of points stored at various nodes.

Since the space for DS1 is O(n), which includes the storage for points, the preprocessing

for DS2 in the partition graph model is only O(n). To answer a simplex emptiness query

for the query simplex q run the Algorithm QUERY. The simplex q is empty iff all the

examined subsets are empty. The query time, measured as the number of edges traversed,

is the same for both DS1 and DS2.
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2.3 Previous Lower Bounds in the Partition Graph Model

2.3.1 Lower Bounds for Hyperplane Emptiness

Erickson [40] proved that any lower bound for halfspace range counting queries in the

semigroup model implies the same lower bound for hyperplane emptiness in the partition

graph model. Brönimann et al.[21] showed that a data structure of size m must spend

Ω(( n
lgn

)
(d2+1)

(d2+d) · 1

m
1
d

) time to answer a halfspace counting query. Very recently, Arya et

al. [12] improved this lower bound to Ω(( n
lgn

)
d

(d+1) · 1

m
1
d

). Both lower bound construc-

tions [12, 21] use n independent uniformly distributed random points in a unit cube [0, 1]d.

Hence, these lower bounds also hold with high probability for randomly generated point

sets (i.e., the lower bounds hold on the average, not only in the worst case).

Erickson deduced lower bounds for hyperplane emptiness queries in the partition graph

model from lower bounds on Hopcroft’s problem. We can think of hyperplane emptiness as

the online version of Hopcroft’s problem. In Hopcroft’s problem, for a given set of points

and hyperplanes, we need to determine whether there is any incidence between a point and

a hyperplane. The bounds on Hopcroft’s problem are optimal up to polylogarithmic factors

in the plane, and have been slightly improved by Braß and Knauer [20] for d > 2. Better

lower bounds exist for the weaker versions of the partition graph model. In particular, if

the preprocessing time is restricted to O(n polylog n), then a data structure must spend

Ω( n1− 1
d

polylogn
) time on answering a hyperplane emptiness query in the general partition graph

model for d = 2, 3, and in the polyhedral partition graph model in dimensions d ≥ 4. These

bounds are optimal up to polylogarithmic factors. The lower bound constructions [20, 40]

use a deterministic point set, a section of the integer lattice Zd, thus these bounds do not

necessarily hold on the average.

2.3.2 Lower Bounds for Simplex Emptiness

The best currently known lower bounds for (non-degenerate) simplex emptiness result

from a simple reduction [17] from halfspace emptiness in the partition graph model. The

lower bounds on halfspace emptiness follow from reducing hyperplane emptiness in Rδ,
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d = δ(δ+3)
2

to halfspace emptiness in Rd by a standard lifting argument, but only in the semi-

algebraic partition graph model [40]. For dimension 2 ≤ d ≤ 4, only trivial lower bounds

are known: any data structure for halfspace emptiness using near-linear space (O(n1+ε)

space) must spend Ω(lg n) time answering a query.

Table 2.3.2 provides a compendium of the relevant range searching lower bounds in

three distinct models of computation: the semigroup arithmetic model, the pointer machine

model, and the partition graph model.

Problem Model Query Time Source
Counting Semigroup arithmetic Ω(

√
n) [27]

(d = 2,m = n)
Counting Semigroup arithmetic Ω( n

m
1
d lgn

) [27]

(d > 2)

Reporting Pointer machine Ω(n
1
2
−ε + r) [34]

(d = 2,m = n)

Reporting Pointer machine Ω(n
1−ε

m
1
d

+ r) [34]

Emptiness Semialgebraic partition graph Ω(n
1
3 ) [17, 40]

(d = 5,m = n) (average case)
Emptiness Semialgebraic partition graph Ω(( n

lgn
)

δ
δ+1 · 1

m
1

(δ+1)
) [12, 17, 40]

(d ≥ δ(δ+3)
2

) (average case)

Emptiness Polyhedral partition graph Ω( n1− 1
δ

polylogn
) [17, 40]

prep = O(n polylog n)

(d ≥ δ(δ+3)
2

) (worst case only)
Emptiness Semialgebraic partition graph Ω(n

1
3 ) new

(d = 2,m = n) (average case)
Emptiness Semialgebraic partition graph Ω(( n

lgn
)

d
d+1 · 1

m
1

(d+1)
) new

(d > 2) (average case)

Emptiness Polyhedral partition graph Ω( n1− 1
d

polylogn
) new

prep = O(n polylog n) (worst case only)

Table 2.1: Lower bounds for online simplex range searching using m space and prep
preprocessing.
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2.4 Results

We establish new lower bounds for the simplex emptiness queries in Rd in the partition

graph model.

• We reduce hyperplane emptiness to simplex emptiness. A data structure for simplex

emptiness in the polyhedral partition graph model must spend Ω( n1− 1
d

polylogn
) time an-

swering a query when the preprocessing is restricted to be O(n polylog n). These

lower bounds are quasi-optimal, and hold in the worst case. We also prove weaker

lower bounds in the general partition graph model, with no restriction on preprocess-

ing, that hold in the average case. (Section 2.6)

Previous lower bounds for simplex emptiness were rather weak, derived from half-

space emptiness queries through a lifting method for d ≥ 5, and only trivial lower

bounds were known for dimensions 2 ≤ d ≤ 4.

• Our lower bounds imply lower bounds for the simplex range reporting in the poly-

hedral partition graph model irrespective of the number of points being reported.

(Section 2.6)

Previous lower bounds hold only for queries containing at least nδ points for some

δ > 0.

• We reduce simplex emptiness to various other problems in computational geometry,

such as segment intersection searching, implicit point location, line-nearest neighbor,

segment dragging, halfplane proximity, halfplane convex hull queries, and point-

inclusion in a union of slabs, see Fig. 2.1.
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Hyperplane Emptiness

Circle Intersection with
a Line Arrangement

Simplex
Emptiness

Simplex
Reporting

Point Inclusion in
a Union of Slabs

Segment
Dragging

Slab Emptiness

Halfspace Convex Hull

Halfspace Proximity

Implicit Point Location

Simplex
One-Reporting

Ray Shooting
among Segments

Slab One-Reporting

Hyperplane-Nearest
Neighbor

Segment Intersection with a
Hyperplane Arrangement

Ray Shooting in a
Hyperplane Arrangement

Figure 2.1: Reductions from hyperplane emptiness to simplex emptiness and other related

problems. Arrows show the direction of reduction.

2.5 Preliminaries

In this section, we prove the key properties of the two point sets used for our lower bound

constructions.
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2.5.1 Deterministic Point Set on a Regular Lattice

Let Ld,n be a set of n points in the integer lattice Zd lying in the cube [0, dn 1
d e]d (Fig. 2.2).

Erdős observed (c.f., [38]) that for every m,n ∈ N such that
√
n ≤ m ≤ n2, there are

m lines in the plane that determine Ω(n
2
3m

2
3 ) point-line incidences with the point set L2,n.

This bound on incidences is best possible by the Szemerédi-Trotter theorem [69]. This

construction led to lower bounds [39] for Hopcroft’s problem in the plane—given n points

and m lines, is there any incidence? Erickson [40] then proved lower bounds for the online

version of Hopcroft’s problem (hyperplane emptiness) in Rd, using the point set Ld,n, by

restricting the amount of preprocessing.

Figure 2.2: Point set on a regular
√
n×√n lattice—Erdős’ construction.

Here we prove that points from a section of the integer lattice Zd must lie on a hyper-

plane if they are contained in a sufficiently thin slab, which is a region between two distinct

parallel hyperplanes in Rd.

Lemma 2.1 For every d > 1, there is a constant cd > 0 such that all points in Ld,n in a

slab of width at most cdn
(1−d)
d lie on a hyperplane.

Proof. The minimum positive volume of a full dimensional simplex in the integer lattice

is 1
d!

. The volume of a simplex {p0, p1, . . . , pd} ⊂ Rd is | detA|
d!

, where A is an d × d

matrix whose columns are the vectors p0pi, i = 1, 2, . . . d. If A is an integer matrix, then its

determinant is an integer. Hence, every convex region that contains d+1 affine independent
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points of Ld,n must have volume at least 1
d!

. However, the volume of the intersection of a

cube of side length dn 1
d e and a slab of width cdn

(1−d)
d is at most cd∆d−1n

(1−d)
d , where

∆ =
√
d · dn 1

d e is the diameter of the cube. This is less than 1
d!

if cd < 1

(2d
(d−1)

2 d!)
. 2

2.5.2 Randomly Generated Set of Points in a Unit Cube

Let Pd,n be a set of n points chosen independently and uniformly at random from the d-

dimensional unit cube [0, 1]d. Chazelle [27] proved that the convex hull of any k points of

Pd,n has Ω( k
n
) volume with high probability if k � lg n.

Theorem 2.1 ([27]) For any d ≥ 2, there exists a constant cd > 0 such that the convex hull

of any k � lg n points of Pd,n has volume greater than cdk
n

with probability greater than

1− 1
n

.

Chazelle (along with his coauthors) used the point set Pd,n to establish lower bounds

for the simplex semigroup queries [27], simplex range reporting [34], and halfspace range

counting [11, 21]. Erickson [40] showed (weaker) lower bounds for hyperplane emptiness

via reduction from halfspace range counting using the same point set. Here we show that

the lower bounds for hyperplane emptiness continue to hold even if the points have the fol-

lowing two additional properties: the first coordinates of any two points differ by Ω(n−3),

and every point is at distance at least Ω(n−d(d+2)) from all hyperplanes spanned by d other

points in Pd,n. Conveniently, the random point set Pd,n has all these properties with high

probability.

Lemma 2.2 For every d ≥ 1, the first coordinates of any two points in Pd,n differ by at

least 1
n3 with probability greater than 1− 1

n
.

Proof. Let {p1, p2, . . . , pn} denote the first coordinates of the points in Pd,n. These are

mutually independent random variables with uniform distribution over the unit interval

[0, 1]. For 1 ≤ 1 < j ≤ n, we have |pi − pj| < 1
n3 if pj lies in the interval of length 2

n3

centered at pi. Hence, the probability that |pi− pj| < 1
n3 is at most 2

n3 . The probability that

there are pi and pj , i < j, with |pi − pj| < 1
n3 is at most

∑
i<j

2
n3 =

(
n
2

)
2
n3 = n−1

n2 < 1
n

. 2
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Lemma 2.3 For every d > 1, there is a constant cd > 0 such that all points of Pd,n in a

slab of width at most cdn−d(d+2) must lie on a hyperplane, with probability 1− 1
n

.

Proof. The diameter of the unit cube [0, 1]d is
√
d. Hence, the intersection of a the unit

cube and a slab of width w has volume less than d
(d−1)

2 w. We show that the volume of

every simplex determined by d+1 points in Pd,n is at least d
(d−1)

2 cdn
−d(d+2) with probability

1− 1
n

, and so it cannot be contained in a thin slab.

Note that any d points in Pd,n are affinely independent and so span a hyperplane,

with probability 1. Let α > 0 be a small constant that we specify shortly. The prob-

ability that a random point is within distance αn−(d+2) from a given hyperplane is less

than 2αd
(d−1)

2 n−(d+2). Hence, the probability that some point in Pd,n lies in the n−(d+2)-

neighborhood of some hyperplane spanned by d other points in Pd,n is less than n
(
n−1
d

)
·

2αd
(d−1)

2 n−d+2, which is less than 1
n

if α > 0 is a sufficiently small constant.

If every vertex of a d-dimensional simplex is at distance at least αn−(d+2) from the

hyperplane of the opposite face (i.e., every height is at least αn−(d+2)), then its volume is

at least (αn−(d+2))
d
d! . This is at least cdd

(d−1)
2 n−d(d+2) if cd = αd

d!
. 2

Theorem 2.2 For any d > 1, a random point set Pd,n has, with probability greater than

1− 3
n

, the properties that

(A) the convex hull of any k � lg n points has volume greater than Ω( k
n
),

(B) first coordinates of any two points differ by at least 1
n3 ,

(C) there exists a width w = Ω(n−d(d+2)) such that all points in a slab of width at most

w lie on a hyperplane.

Proof. By Theorem 2.1, Lemma 2.2 and Lemma 2.3, a random point set Pd,n has property

(A), (B) and (C), respectively, with probability at least 1 − 1
n

. Hence, it has all three

properties with probability at least 1− 3
n

. 2

2.6 Lower Bounds for Simplex Emptiness

In this section, we establish the lower bounds for both simplex and slab emptiness in the

partition graph model. First we reduce hyperplane emptiness to simplex one-reporting.
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That is, we are given a simplex one-reporting data structure (a black box), and we answer

a hyperplane emptiness query using the information obtained from a carefully designed

sequence of simplex one-reporting queries. Then we reduce simplex one-reporting to sim-

plex emptiness. Our reduction arguments work for both the deterministic and the random

point sets Ld,n and Pd,n.

1. Given a data structure DS1R for simplex one-reporting that answers “empty” if the

simplex is empty and reports an arbitrary point (witness) inside the simplex other-

wise, we show that a hyperplane emptiness query can be answered by making O(d2)

queries to DS1R.

2. Given a data structure DSΦ for simplex emptiness that answers “yes” whenever the

simplex is empty and “no” otherwise, we show that a witness for a nonempty simplex

can be reported by making O(d lg n) queries.

2.6.1 Reducing Hyperplane Emptiness to Simplex One-Reporting

Recall that Ld,n is a section of the d-dimensional integer lattice. LetB be the bounding box

of the point set. For the given query hyperplane h, create a “flat” simplex R that contains

h ∩ B and lies in a sufficiently thin slab. Query the data structure DS1R. If the simplex R

is empty, then the hyperplane is also empty. Otherwise, the data structure reports a point

p1 ∈ R. If p1 ∈ h, which can be checked in constant time, then the hyperplane is not empty.

Assume we have already found k affine independent points {p1, p2, . . . , pk} in R \ h. If

k < d, then let Fk be the (k − 1)-dimensional flat spanned by them; cover R \ Fk by a

constant number of (possibly overlapping) simplicies, and query these simplicies. If all are

empty, then the hyperplane is also empty. Otherwise, we find a point pk+1 ∈ R, which is

affine independent from the first k points. If we find k = d affine independent points in

R, then every point in R ∩ Ld,n must lie on the hyperplane Fd by Lemma 2.1. Now the

point set Ld,n ∩ Fd is an affine copy of points from the integer lattice Zd−1, and h ∩ Fd is a

hyperplane within Fd. So we have reduced the problem to (d − 1) dimensions with O(d)

queries to DS1R. With O(d2) queries, we reduce the problem to zero dimension, where the

location of a witness is limited to a single point. We can check in constant time whether

this point is in Ld,n, and report the answer.

25



www.manaraa.com

h

R

p1

p2

Figure 2.3: Reducing hyperplane emptiness to simplex one-reporting.

The reduction is somewhat simpler for the random point set Pd,n. If there are d affine

independent points that lie in R \ h, then h must be empty (Lemma 2.3). Induction on the

dimension is not necessary, and so O(d) queries to DS1R suffice.

2.6.2 Reducing Simplex One-Reporting to Simplex Emptiness

The hard part of answering a simplex one-reporting query lies in deciding whether or not

the simplex is empty, rather than in reporting of a witness. We are given a data structure

DSΦ and a query simplex R. If the simplex is empty, then there is nothing to report.

Otherwise, partition the point set in two equal halves along an axis-aligned hyperplane.

Cover the parts of R in each half-space by a constant number of (possibly overlapping)

smaller simplicies. Query all the smaller simplicies, and recurse on one of the nonempty
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simplicies. After O(lg n) queries, the diameter of simplex drops below 1, and then we can

report the unique lattice point that resides in the simplex in constant time.

R

Figure 2.4: Reducing simplex one-reporting to simplex emptiness.

For a random point set, it is crucial that the underlying point set S has property (B), that

is, the first coordinates of any two points differ by at least 1
n3 . Repeat the above argument

with the restriction that every halving hyperplane is orthogonal to the x1-axis. (Note that a

hyperplane contains n
(d−1)
d point of Ld,n, so we used hyperplanes of different orientations

for partitioning Ld,n.) Stop when the width between two parallel hyperplanes drops below
1

2n3 . Since S satisfies property (B), there is a unique point that lies in a nonempty simplex,

which we can find by simple binary search over the first coordinates of the points.

Remark. Since any data structure for simplex reporting can answer simplex emptiness

queries, the lower bounds for simplex emptiness also hold for simplex reporting.
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2.6.3 Reducing Hyperplane Emptiness to Slab Emptiness

We conclude this section by reducing hyperplane emptiness to slab one-reporting, which

in turn can be reduced to slab emptiness. Note that a query about a slab carries less useful

information than a simplex query, hence the reduction is more involved. We first present

a reduction that uses slabs of constant width. This reduction works for the planar lattice

L2,n and for random point sets Pd.n for all d ≥ 2. Then we present a refined reduction with

varying slab widths that works for lattices Ld,n in all dimensions.

We are given a set of n points in a bounding box B ⊂ Rd, and want to answer an

emptiness query for a hyperplane h. Construct a d-dimensional range tree [18] on the point

set. Each node of the range tree corresponds to a subset of points clipped in an axis-aligned

box. For each of these subsets, construct a slab one-reporting data structure. The range tree

data structure costs an extra factor of O(lgd−1 n) space.

h H

p1

p2

Figure 2.5: Reducing hyperplane emptiness to slab emptiness

For a query hyperplane h, create a sufficiently thin slab H containing h∩B. Query the

slab one-reporting data structure at the root of the range tree. If the slab H is empty, then

there is nothing to report. Otherwise, the data structure reports a point p ∈ H . Assume

we have already found k distinct points {p1, p2, . . . , pk} in H \ h. If k < d, then we can
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cover H \ {p1, p2, . . . , pk} by O(lg n) axis-aligned boxes for which we maintain a slab

one-reporting data structure. Query H for all O(lg n) data structures. If all return “empty”,

then the hyperplane is also empty. Otherwise, we find a point pk+1 ∈ H , which is distinct

from the first k points. If we find k = d distinct points in H , then every point in H ∩ Pd,n
must lie on the hyperplane spanned by {p1, . . . , pd} (c.f., Lemma 2.3), hence h is empty.

In case of the section of the integer lattice Ld,n, we cannot guarantee that the points

{p1, . . . , pk} are affine independent when d ≥ 3. Two distinct points are automatically

affine independent, and so for d = 2 our argument works analogously to reduction for

simplex one-reporting.

2.6.4 Reducing Hyperplane Emptiness to Slab Emptiness for Ld,n d ≥ 3

Recall that Ld,n is a set of n points in the [0, dn 1
d e] section of the integer lattice Zd. We

reduce hyperplane emptiness to slab one-reporting, which in turn reduces to slab emptiness

(using range trees as in Section 2.6.3). Recall that a data structure DS1RS for slab one-

reporting (for slabs of arbitrary widths) answers “empty” if the slab is empty and reports

an arbitrary point (witness) inside the query slab otherwise.

For a query hyperplane h, create a thin slab H0 containing h and of width cdn
(1−d)
d ,

where cd is the constant from Lemma 2.1. Query the data structure DS1RS. If the slab H0

is empty, then hyperplane h is also empty. Otherwise, the data structure reports a point

p1 ∈ H . If p1 ∈ h, then the hyperplane is not empty.

Assume that we have already found k affine independent points {p1, p2, . . . , pk} inH0\
h. If k < d, then let Fk be the (k − 1)-dimensional flat spanned by them. Based on an

orthogonal basis of Fk, compute a width wk such that (i) any slab of width wk parallel to h

contains at most one (the closest) point form Ld,n; and (ii) wk is smaller than the distance

between h and {p1, . . . , pk}. Query DS1RS for a slab Hk ⊂ H0 of width wk containing h.

If Hk is empty, then h is empty, otherwise, we obtain a new point q ∈ Hk ⊂ H0. If q ∈ h,

then the hyperplane is not empty. If q 6∈ h but q ∈ Fk, then q is the closest point to h in

Fk ∩ Ld,n (by the construction of Hk), and then we can replace pk with q, and recompute

wk. Finally, if q 6∈ h and q 6∈ Fk, then pk+1 = q is a new affine independent point lying

in H0 \ h. If we find k = d affine independent points in H , then every point in H ∩ Ld,n
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must lie on the hyperplane Fd by Lemma 2.1. From here, we can continue exactly as in our

reduction to simplex one-reporting (Section 2.6.1).

2.7 Lower Bounds for Related Problems

We show that the above lower bounds for simplex emptiness queries also apply to several

other problems in computational geometry. We present the problems for d = 2 (that is,

in the plane) only, but the lower bounds extend to their d-dimensional variants. For the

planar variants of these problems, there are data structures with n ≤ m ≤ n2 space and

O( n√
m

polylog (n)) query time. The data structures are based on the simplicial partition

trees, which can be implemented in the partition graph model (see Section 2.2.4). The lower

bounds are all optimal up to polylogarithmic factors, and they are shown by reduction from

slab emptiness.

H

`

Figure 2.6: Reduction from slab emptiness to line-nearest neighbor queries.
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2.7.1 Line-Nearest Neighbor

Given a set of n points in the plane, a line-nearest neighbor query asks for the closest point

to a query line `. We show that slab emptiness reduces to line-nearest neighbor queries.

Assume we have a data structure that supports line-nearest neighbor queries, and we want

to tell whether a slab H is empty or not. It is enough to query the line `, which is is parallel

to H and partitions H into two congruent slabs. The slab H is empty iff the nearest point

to ` lies outside of H , which can be verified in constant time.

2.7.2 Segment Intersection with an Arrangements of Lines

The standard point-line duality is a bijection between a point p(a, b) and a nonvertical line

` in the plane via p(a, b)↔ ` : y = ax+ b. The dual of a set of points is an arrangement of

nonvertical lines. A nonvertical slab is the union of parallel lines, whose duals are points

along a vertical line segment. A nonvertical slab is empty iff the dual segment does not

intersect any line. It follows that our lower bounds directly apply to the vertical segment

intersection query, which asks whether a vertical query segment intersects any line in a

given set of n lines in the plane. Clearly, our lower bounds also apply to the more general

segment intersection query, in which the query segment does not have to be vertical.

Segment intersection, in turn, reduces to point location queries in an arrangement of

lines, since a segment intersects a line iff its two endpoints are in distinct faces (recall that

all faces are convex).

Similarly, it also reduces to ray shooting queries in an arrangement of lines: a segment

intersects a line iff the ray shot from one endpoint along the segment hits a line before

reaching the other endpoint. Notice that for a seemingly similar problem of ray intersection

in an arrangement of lines, there is a data structure with O(polylog n) query time using

near-linear space [17].

2.7.3 Segment Dragging

Given a set of polygonal objects in the plane, a segment dragging query [2] asks for the

first object hit if a query segment e moves (is dragged) in a query direction ρ. A segment
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dragging query reduces to a parallelogram emptiness query. Hyperplane emptiness reduces

to parallelogram emptiness exactly as it reduced to slab emptiness (c.f., Section 2.6.3). The

obstacles are points in the plane. A query parallelogram R is empty iff when dragging one

side of R towards the opposite side, the first point hit lies outside of R. The best known

data structure supports segment dragging queries in O( n√
m

polylog n) time using O(m)

space [2] in the RAM model. Chazelle [25] gave an O(n)-size data structure in the RAM

model with O(lg n) query time for the special case of horizontal segments and vertical

directions. Segment dragging has applications in computer graphics, motion planning and

manufacturing [2, 25].

2.7.4 Implicit Point location

Agarwal and Kreveld [6] considered the problem of implicit point location for a set of n

(possibly intersecting) line segments in the plane. A data structure implicitly stores the

arrangement of segments such that for a query segment e, it can detect whether the two

endpoints of e belong to the same face of the arrangement. They gave a data structure

for implicit point location with O(n lg2 n) space and O(
√
n lg2 n) query time in the RAM

model.

B

e

p1

p2

p

Figure 2.7: Reduction from segment intersection to implicit point location.
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We establish lower bounds by reducing vertical segment intersection with an arrange-

ment of lines to implicit point location. We preprocess an arrangement of n lines as follows.

Assume that no line is vertical (by a rotation if necessary) and not all are parallel. Let B

be the bounding box of all intersection points among the lines. Build an implicit point

location data structure DSimplicit on the parts of the lines clipped in B, and the four edges

of B. Build a linear-size explicit point location data structure DSexplicit with O(lg n) query

time for the portion of the arrangement outside B (e.g. sort the rays by slope). Finally,

build a binary search tree on the 2n intersection points between the box B and the lines

(sorted counterclockwise along B). We can then answer a segment intersection query as

described in Algorithm SEGMENTINTERSECTIONWITHARRANGEMENT. A query seg-

ment e = p1p2 inside B intersects with the arrangement of lines iff the endpoints p1 and p2

lie in the different faces of the arrangement, since the faces of the arrangement of lines as

well as the interior of B are convex.

Algorithm 5 SEGMENTINTERSECTIONWITHARRANGEMENT (e)

Let p1 and p2 be the two endpoints of e
if e does not intersect B then

if both p1 and p2 lie outside B then
if DSexplicit reports that p1 and p2 are not in the same face then

return “intersection”
end if

else if DSimplicit reports that p1 and p2 are not in the same face then
return “intersection”

end if
else if e intersects B at point p then

if p is one of the 2n intersection points of B with the arrangement then
return “intersection”

else
Break e into two half-open segments [p1, p) and [p2, p)
SEGMENTINTERSECTIONWITHARRANGEMENT [p2, p)
SEGMENTINTERSECTIONWITHARRANGEMENT [p1, p)

end if
end if
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2.7.5 Halfplane Convex Hull Queries

For a set S of n points in the plane and a halfplane h+, the halfplane convex hull is the

convex hull ch(S ∩ h+) of the subset of points lying in h+. If a data structure can report

the halfplane convex hull explicitly for a query halfplane h+, then it can also answer a

line nearest neighbor query in an additional O(lg n) time. Hence, our lower bounds for

slab emptiness apply to such a data structure as well. Reporting ch(S ∩h+) may take up to

Ω(n), however. A family of halfplane convex hull queries asks onlyO(1) information about

the convex hull ch(S ∩ h+), where h+ is part of the query. These queries include extremal-

point query, tangent query, line-stabbing query, and containment query. For example, a

halfplane line-stabbing query (h+, `) asks whether the query line ` intersects the convex

hull ch(S ∩H+).

p

Figure 2.8: Halfplane convex hull queries.

A slab emptiness query reduces to a halfplane extremal-point query and halfplane line-

stabbing query. For a slab H defined by the two parallel lines `l and `r, a slab emptiness

query can be answered by finding the extremal point in the direction perpendicular to `l in

the closed halfplane to the left of `r. Similarly a line-stabbing query for the line `l in the
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closed halfplane to the left of `r can answer a slab emptiness query. A halfplane extremal-

point query in turn reduces to halfplane tangent query. Hence, the slab emptiness lower

bounds apply to halfplane extremal point, tangent and line-stabbing queries. However,

finding a reduction to halfplane containment queries remains an open problem.

2.7.6 Halfplane Proximity Queries

A halfplane proximity query (h+, p) is similar to halfplane convex hull query. It asks for

the nearest/farthest neighbor of the query point p among the points in S ∩ h+. Halfplane

proximity queries have applications in polygonal line simplification, and have been studied

by Aronov et al. [10] and Daescu et al. [36].

p

Figure 2.9: Halfplane queries proximity queries.

The lower bounds for halfplane proximity queries can be established by a reduction

from slab emptiness. For a slab H defined by the two parallel lines `l and `r, a slab empti-

ness query can be answered by finding the nearest/farthest neighbor of a point p in the

closed halfplane to the left of `r. The point p is placed sufficiently far in the direction per-

pendicular to `l. A point p is sufficiently far if a circle centered at p is “indistinguishable”

from a line within the bounding box of the point set S. That is, within the bounding box B
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of S, a line segment and a tangent circle centered at p are both contained in a slab of width

O(n−
1
2 ) (c.f., Lemmas 2.1 and 2.3). For nearest neighbor, the point p is to the left of `r,

and to the right of `l for the farthest neighbor.

2.7.7 Point-Inclusion in a Union of Slabs

The circle intersection with an arrangement of lines asks whether a query circle intersects

any line in the arrangement. Point-line duality maps the points of a circle to lines tangent

to a hyperbola (i.e., lines whose union fills the interior of the hyperbola). Therefore, circle

intersection with an arrangement of lines is equivalent to hyperbola emptiness for a set of

points in the plane. Hyperplane emptiness reduces to hyperbola emptiness exactly as it

reduced to slab emptiness (c.f., Section 2.6.3). The same argument works with hyperbolas

instead of slabs, since every hyperbola contains a line (a symmetry axis), and every thin

slab contains a “thin” hyperbola clipped inside the bounding box B of the point set.

Figure 2.10: Reducing circle intersection to point-inclusion in a union of slabs.

We can also assume that all query circles have a fixed (but very small) radius, which

means that the corresponding hyperbolas (clipped in a bounding box) all fit in an identical
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thin slab. Unit circle intersection with an arrangement of lines reduces to point inclusion

in a union of slabs. Replace each line in the arrangement by a slab of width 2. Then a unit

circle intersects a line iff the center of the circle is inside some slab.

Using the point-line duality again, point-inclusion in a union of slabs is equivalent to

detecting whether a query line intersects any segment in an arrangement of vertical line

segments, which trivially reduces to ray shooting among vertical segments. The previous

lower bounds for ray shooting were shown using point obstacles [40].

Note. The reduction from slab emptiness to circle intersection works only in the plane.

2.8 Conclusion

In this chapter we presented quasi-optimal lower bounds for the simplex emptiness and

reporting queries in the partition graph model. The lower bounds on simplex emptiness

(slab emptiness) also hold for numerous other geometric problems. One interesting open

problem is to understand the complexity of halfplane containment queries.
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Chapter 3

Data Structures for Restricted Simplex
Queries

In Chapter 2, we established lower bounds on simplex emptiness in the partition graph

model: for a set S of n points in Euclidean d-space Rd a data structure with O(n) space

must spend Ω( n1− 1
d

polylogn
) time answering a query. The same lower bounds hold for simplex

reporting. Hence, we cannot achieve linear-space and polylogarithmic query time simul-

taneously for simplex range searching. In this chapter, we consider a restricted version of

simplex emptiness queries called restricted planar simplex emptiness where the points are

in the plane and each query simplex contains a fixed point (origin) in its interior. In the

plane a simplex is simply a triangle, so we will use the two terms interchangeably. Since

we can triangulate any triangle containing the origin into three triangles such that each

triangle has one vertex incident on the origin, from now on we assume that each query tri-

angle has one vertex at the origin. The same idea works for any convex polygon containing

the origin, however, the number of query triangles is equal to the number of sides in the

polygon.

For this restricted version, the lower bounds of general simplex emptiness do not hold;

we present various linear-space data structures for n points in the plane, that achieve

Data Structures for Restricted Triangular Range Searching, Nadia M. Benbernou, Mashhood Ishaque and
Diane L. Souvaine. Appeared in the proceedings of 20th Canadian Conference on Computational Geometry,
2008.
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O

Figure 3.1: Restricted triangular range queries

O(polylog n) query time in the RAM model. In the plane, the restricted version of simplex

range searching behaves analogous to halfplane range searching i.e. there exist linear-space

data structures for emptiness and reporting that support queries in polylogarithmic times.

However, a data structure for restricted simplex counting with O(n) space must spend

Ω(
√
n) time answering a counting query just like the data structures for halfplane range

counting. The lower bounds on halfplane range counting were proved by Chazelle [27] in

the semigroup arithmetic model. The same lower bounds can be established on restricted

simplex range counting via a trivial reduction from halfplane range counting to simplex

range counting (See Figure 3.2).

3.1 Previously known upper bounds

The best known data structure for simplex range searching in the plane usesO(n) space and

supports queries in O(
√
n) time in the RAM model [23]; additional O(r) time is taken for

reporting r points. The data structure is based on simplicial partitioning method. For super-

linear space, Chazelle et al. [35] gave a data structure in the RAM model with O(n2+ε)

space that supports simplex reporting queries in O(lg n + r) time for any fixed ε > 0,

where the constant of proportionality depends on ε. Goswami et al. [45] presented a O(n2)
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h−

Figure 3.2: Reduction from halfplane range counting to simplex range counting. The half-
plane h− inside the bounding box is a convex polygon with constant number of sides, hence
it can be triangulated into a constant number of restricted simplicies. The number of points
in the halfplane h+ is (n− counth−).

space data structure in the RAM model that can support triangular reporting queries in

O(lg2 n+ r) and triangular counting (and hence emptiness) queries in O(lg n) time.

For halfplane emptiness, a data structure withO(n) space that maintains the convex hull

of the given point set, can support emptiness queries in O(lg n) time in the RAM model.

For halfplane range reporting, Chazelle et al. [32] gave a linear-space data structure in the

RAM model that achieves O(lg n + r) query time. The data structure maintains nested

(peeling) convex layers for the given point set.

3.2 Results

Since it is not possible to achieve the linear-space and the polylogarithmic query time

simultaneously for simplex range searching in light of the lower bounds from Chapter 2,

we consider a restricted version and give linear-space data structures with polylogarithmic

query times in the RAM model. The summary of our data structures for restricted simplex

emptiness and reporting is presented in Table 3.2.
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Problem Space Query Preprocessing Section
Emptiness O(n lg n) O(lg2 n) O(n lg n) 3.4.1

O(n) O(lg2 n) O(n lg n) 3.4.2
O(n lg n) O(lg n) O(n lg n) 3.4.4
O(n1+ε) O(2

1
ε lg n) O(n1+ε) 3.4.3

Reporting O(n lg n) O(lg2 n+ r) O(n lg2 n) 3.4.1
O(n1+ε) O(2

1
ε lg n+ r) O(n1+ε) 3.4.3

Table 3.1: Data structures for restricted planar simplex emptiness and reporting.

In Section 3.4.5 we create data structures for ray intersection detection and report-

ing among an arrangement of n lines, and in Section 3.4.6 we present data structures for

non-orthogonal square emptiness and reporting. Note that all reporting queries incur an

additional cost of O(r) where r is the number of objects to be reported.

3.3 Tools and Techniques

In order to build our data structures we employ the following data structural techniques:

range trees, and space-reducing transformation of Aronov et al. [10]. We briefly describe

each of these techniques below. We also use standard point-line duality.

3.3.1 Range Trees

For a set of n points sorted by x-coordinate (w.l.o.g), a 1-d range tree is a balanced binary

search tree that supports accessing points in any query interval along x-axis. A node in

the range tree can be augmented with auxiliary information such as the convex hull of the

points in the node’s subtree. A 1-d range tree augmented with convex hulls can support any

convex hull query constrained by a query interval (vertical strip). To answer a query, the

leaves in the range tree corresponding to query interval are located. Then by climbing up the

tree from the two leaves until the least common ancestor is reached, up to O(lg n) auxiliary

structures are collected. Together these structures cover all the points in the interval.

For the 1-d range tree on n points there is a O(lg n)-factor overhead for both the space

and the query time. For example, a 1-d range tree augmented with convex hulls needs
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O(n lg n) space and supports queries in O(lg2 n) time.

Similarly we can create a 2-d range tree, where each node in the tree contains a (possibly

augmented) 1-d range tree. A 2-d range tree supports accessing points in an axis-parallel

rectangle, and carries an additional overhead of O(lg n) for both the space and the query

time. A 2-d range tree augmented with convex hulls needs O(n lg2 n) space and supports

queries in O(lg3 n) time.

Sometimes it is possible to shave off the extra O(lg n) factor from the query time of the

range tree by using the fractional cascading technique [31].

3.3.2 Space-Reducing Transformation

We are given a data structure DS on n points, with O(n) space supporting a query q in

O(lg n) time. The points {p1, p22, . . . , pn} are in some sorted order. Using a 1-d range

tree augmented with DS, we can answer the query q on any interval [i, j] of points. The

query time is O(lg2 n). However, we can get rid this extra O(lg n) factor by the using the

space-reducing transformation of Aronov et al. [10].

Here is how the transformation works. First a build a naı̈ve data structure on n points

that stores one data structure DSi,j for each possible interval [i, j]. Since there are n2

possible intervals, the space for this naı̈ve data structure is n3. However, the query time is

clearly O(lg n). Now select every mth point in the sorted order and call it a breakpoint.

For each breakpoint mi, compute the data structures DSi,i+2, DSi,i+4, . . . i.e. for each

sequence of points starting at mi whose length is a power of two. Similarly compute

DSi,i−2, DSi,i−4, . . .. This constitutes linear space for each breakpoint. Since there are

O( n
m

) breakpoints, the space for these data structures is O( n
m
· n). Now for each half-

open interval [mi,mi+1) formed by the breakpoints mi and mi+1, compute the naı̈ve data

structure with the O(m3) space and the O(lg n) query time. Thus the total space for the

data structure after one space-reducing transformation is O(( n
m

+ 1)m3 + n2

m
).

We can apply this space-reducing transformation recursively. Let M(n) be the size of

this recursive data structure on n points. The recurrence relation (same as in [10]) for the

space of the data structure is:

M(n) = ( n
m

+ 1)M(m) +O(n
2

m
).
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Applying (
⌈

1
2

+ 1
ε

⌉
) transformations for any given ε > 0, as in [10], yields the desired

space and preprocessing of O(n1+ε).

To answer a query qi,j , identify the leftmost and rightmost breakpoints mi and mj

inside the interval. The open intervals (i,mi) and (mj, j) do not contain any breakpoint,

thus we must have a recursive data structure for them. Let Q(m) be the time to query these

data structures. For the interval [mi,mj], query the data structures for associated with the

breakpoints mi and mj . Each query takes O(lg n) time and two such queries will cover

all the points in the interval. The recurrence relation for query time is given below, with a

solution of O(2
1
ε lg n) (as in [10]):

Q(n) = 2Q(m) +O(lg n).

3.4 The Data Structures

3.4.1 O(lg2 n) Query Time with O(n lg n) Space

Given a set of n points in the plane, sort the points rotationally in counterclockwise order

around the origin. Assign each point as ID its order in the sorted list of points. Build a

1-d range tree on the point set, augmented with convex hulls (data structure for halfplane

emptiness). Now consider any single wedge formed by two rays emanating from the origin.

Let i be the first and j be the last point inside the wedge that will be hit if we were to sweep

rotationally around origin using a ray going counterclockwise. Observe that all the points

inside the wedge are consecutive (with wrap-around) in the sorted order, see Figure 3.3.

For any given wedge, we can find the points i and j in O(lg n) time. For any triangular

simplex emptiness query ∆abc with a vertex b incident on the origin, we can extend the two

sides as rays
−→
ba and

−→
bc away from the origin to form a wedge. Now we answer a simplex

emptiness query by finding the extreme point in the direction perpendicular to support-

ing line containing ←→ac—a halfplane emptiness query. The space for the data structure is

O(n lg n) and the query time is O(lg2 n). The preprocessing is O(n lg n) because we can

compute the convex hull of sorted points in O(n) time.

For simplex reporting, we augment the 1-d range tree with Chazelle’s nested-convex-

layers data structure (for halfplane reporting). The data structure needs O(n lg n) space,
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Figure 3.3: Points sorted around the origin

O(n lg2 n) preprocessing time and supports queries in O(lg2 n+r) time. Daescu et al. [37]

used a similar idea to build a data structure for halfplane farthest-point queries.

3.4.2 O(lg2 n) Query Time with O(n) Space for Emptiness

For emptiness queries, we can improve the space to be O(n) by using the dynamic convex

hull structure of Overmars and van Leeuwen [63]. The data structure needs O(n) space,

and O(n lg n) preprocessing. The query time remains O(lg2 n).

3.4.3 O(2
1
ε lg n) Query Time with O(n1+ε) Space

Given a set of n points in the plane sorted rotationally around the origin, a naı̈ve data struc-

ture for restricted simplex emptiness queries store a convex hull for each pair of indicies

(i, j). Thus the data structure support emptiness queries in O(lg n) time, but the space re-

quirement is O(n3). The preprocessing time is O(n3) because we can compute the convex

hull in linear time for points in sorted order. For triangular reporting we store the nested

convex layers instead of the convex hulls. The query time isO(lg n+r), the space isO(n3),

and the preprocessing is O(n3 lg n).
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The space and processing time for these naı̈ve data structures can be reduced toO(n1+ε)

by recursively applying the space-reducing transformation from Aronov et al. [10](see Sec-

tion 3.3.2). The space-reducing transformations preserve the O(lg n) query time, but the

constant is exponential in 1
ε
.

To answer a triangular emptiness (reporting) query, identify inO(lg n) time the extreme

points i and j inside the wedge. Let mi and mj be the breakpoints inside the wedge that

are the closest to points i and j respectively. The open intervals (i,mi) and (mj, j) do

not contain any breakpoint, thus we must have a recursive data structure for them. For the

interval [mi,mj], two convex hull (convex layers) queries will cover all the points in the

interval. For a reporting query we may report some points twice.

3.4.4 O(lg n) Query Time with O(n lg n) Space for Emptiness

We apply the fractional cascading technique [31] to the augmented 1-d range tree data

structure for restricted simplex emptiness given in Section 3.4.1, and reduce the query time

from O(lg2 n) to O(lg n). However, the space requirement remains O(n lg n).

The basic idea is to augment a 1-d range tree by associating with every node a data

structure for extremal point queries for the points in node’s subtree, and then to use the

fractional cascading technique. At each node we store the set of extremal points and as-

sociate with each extreme point a half-open interval of slopes—the point is extremal for

slopes in that particular interval. We can store a sorted array of these intervals and for a

given slope find the extreme point in O(lg n) time using binary search. The sorted array at

each node also stores pointers to arrays in child nodes such that we need to perform binary

search only once. As a result, we perform O(lg n) extremal point queries, but only the

first extremal point query takes O(lg n) time, and the queries after that can be answered in

constant time.

We cannot achieve O(lg n+ r) time for reporting queries using the same method, since

Chazelle and Liu [33] showed that the fractional cascading technique does not generalize

to planar maps.
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3.4.5 Ray Intersection Queries in a Line Arrangement

In the data structures for restricted triangular range queries if the points are sorted by their

x-coordinate instead of radially sorted around origin, the data structures can support wedge

range searching queries where one of the lines forming the wedge is vertical. Using two

such wedges, we can answer the double-wedge range searching queries where one of the

lines forming the double-wedge is vertical (see Figure 3.4).

Figure 3.4: A wedge with one vertical line.

Since such a double-wedge corresponds to a ray under the standard point-line duality

transform, the data structures for planar restricted simplex range searching can be used to

answer ray intersection detection and reporting queries among an arrangement of n lines.

3.4.6 Non-Orthogonal Square Range Searching Queries

A 2d-range tree augmented with a convex-hull (nested-convex-layers) data structure can

support axis-parallel right-triangular emptiness (reporting) queries, with a O(lg n) fac-

tor overhead. Since a non-orthogonal square can be partitioned into at most eight axis-

parallel right triangles, the data structures for axis-parallel right triangles also support non-

orthogonal square (or rectangles with constant aspect ratio i.e. fat rectangles) emptiness

and reporting queries.
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This is how we partition an arbitrarily oriented square: from the highest vertex of the

given square draw a vertical line segment down to one of the non-adjacent sides. Similarly

from the lowest vertex draw a vertical line segment upwards. Let x be the side-length

then each vertical segment has a length in the interval [x,
√

2x]. The two diagonals of

the square intersect at a distance 1√
2
x from each vertex. Therefore, the downward vertical

segment goes below and the upward vertical segments goes above this point of intersection.

Thus we can draw horizontal segment from the lower (upper) endpoint of the downward

(upward) vertical segment to the other vertical segment.

Figure 3.5: Non-orthogonal square range queries

3.5 Conclusion

In this chapter we presented various data structures for the restricted version of the sim-

plex emptiness and reporting queries, where the query simplex contains the origin. We

showed that the upper bounds for restricted simplex range searching are similar to those

for halfplane range searching. An interesting open problem is how to create the optimal

data structures for restricted simplex emptiness and reporting—O(n) space and O(lg n)

query time.
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Chapter 4

Data Structures for Permanent Ray
Shooting

Ray shooting data structures are a classical core component of computational geometry.

They store a set of preprocessed of objects in space such that one can efficiently find the

first object hit by a query ray. A simple polygon with n vertices can be preprocessed in

O(n) time to answer ray shooting queries in O(lg n) time, using either a balanced geodesic

triangulation [30] or a Steiner triangulation [48]. However, the free space between disjoint

polygonal obstacles with a total of n vertices (e.g. n
2

disjoint line segments) cannot be

handled as easily. The best ray shooting data structures can answer a query in O( n√
m

) time

(ignoring polylogarithmic factors) using O(m) space and preprocessing, based on range

searching data structures via parametric search. That is, an average query takes O(
√
n)

time using O(n) space. Refer to [3, 66] for higher dimensional variants and special cases.

Geometric algorithms often rely on ray shooting data structures where the result of

each query may affect the course of the algorithm and modify the data. The current best

dynamic data structure, due to Goodrich and R. Tamassia [44], uses O(n lg n) space and

preprocessing time and supports ray shooting queries, segment insertions and deletions in

O(lg2 n) time, however, it requires that the free space between the obstacles consists of

Shooting Permanent Rays Among Disjoint Polygons in the Plane, Mashhood Ishaque, Bettina Speck-
mann and Csaba D. Tóth. A preliminary version appeared in the proceedings of 25th Annual ACM Sympo-
sium on Computational Geometry, 2009.
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simply connected faces. For the free space between disjoint obstacles (equivalently, for a

polygon with holes), the current best data structure uses dynamized range searching data

structures via parametric search, which can answer a query in O( n√
m

) time using O(m)

space and preprocessing.

4.1 Related work

For a set of points in the plane, the fully dynamic convex hull data structure of Overmars

and van Leeuwen [63], as well as the semi-dynamic data structures of Chazelle [24] and

Hershberger-Suri [47] rely on a binary hierarchy of nested convex hulls. This idea was

recently extended to a semi-dynamic data structure for geodesic hulls that supports point

deletion and obstacle insertion in a companion paper [51], but it only works in the special

case that every face in the free space is simply connected, and the runtime uses additional

polylogarithmic factors.

A tiling of the free space between disjoint polygons in the plane can serve as a certificate

that the polygons do not intersect. If the tiling is easily maintainable as the polygons

move, then it can be the basis for kinetic algorithms for collision detection. Kirkpatrick

and Speckmann [55, 68], and independently Agarwal et al. [4, 14] developed kinetic data

structures that are based on tilings with pseudo-triangles—simple polygons with exactly

three convex angles.

The theoretical study of geodesics in the interior of a simple polygon was pioneered by

Toussaint [76, 77]. He showed that the geodesic hull ghD(S) of a set S of n points in a

simple n-gon D can be computed in O(n lg n) time, and any line segment in the interior of

D crosses at most two edges of ghD(S). Mitchell [62] and Ghosh [43] survey results on

geometric shortest paths in the plane.

Dynamic ray shooting in simple polygons. Chazelle et al. [30] showed that a balanced

geodesic triangulation of a polygon with n vertices can be used to answer ray shooting

queries in the polygon in O(lg n) time. Goodrich and Tamassia [44] generalized this data

structure to dynamic subdivisions defined by noncrossing line segments where each face

is a simple polygon. They maintain a balanced geodesic triangulation of each face. For

m segments, the data structure has O(m) size. Each segment insertion and deletion, point
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location, and ray shooting query takes O(lg2m) time.

4.2 Results

We present a data structure for ray shooting-and-insertion queries among disjoint polygonal

obstacles lying in a bounding boxB in the plane. Each query is a point p on the boundary of

an obstacle and a direction dp; we report the first point q where the the ray emanating from p

in direction dp hits an obstacle or the bounding box (ray shooting) and insert the segment pq

(insertion) as a new obstacle edge (Fig. 4.1). If the input polygons have a total of n vertices,

our data structure uses O(n lg n) preprocessing time, and it supports m ray shooting-and-

insertion queries in O((n + m) lg2 n + m lgm) total time and O((n + m) lg(n + m))

space. The worst case time bound for a single ray shooting-and-insertion query, however,

is O(n
1
2

+ε + lgm) for any fixed ε > 0, where the constant of proportionality depends on ε.

We present two applications for our data structure: efficient implementation of auto-

partitioning and convex partitioning algorithms. The condition that every query point p is

on the boundary of an obstacle is satisfied for our motivating applications. This condition

cannot easily be relaxed using our current techniques, since our data structure is built on

the geodesic hull of all reflex vertices of the free space between the obstacles. If we insert

a line segment along a query ray emanating from a point v in the interior of the free space,

then v becomes a new reflex vertex of the free space. Introducingm new reflex vertices can

generate Ω(nm) combinatorial changes in the geodesic hull, as was recently shown in [51].

4.3 Applications

Successive ray shooting queries are responsible for a bottleneck in the runtime of some

geometric algorithms, which recursively partition the plane along rays (along the portion

of rays between their starting points and the first obstacles hit, to be precise). We present

two specific applications.
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(a)

p1

(b)

p1 p2

q1

(c)

p1 p2
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Figure 4.1: (a) Disjoint polygonal objects in the plane; (b) first ray shooting-and-insertion
query at p1; (c) second ray shooting-and-insertion query at p2; (d) a convex partition of the
free space.

4.3.1 Computing a Binary Space Partition

An binary space partition (for short, BSP) for a set L of disjoint line segments in the plane

is a recursive decomposition of the plane into convex cells. Each step partitions the plane

along a line and recurses on the segments clipped in each open halfplane. An auto-partition

is a BSP where each partition is made along the supporting line of an input segment [18].

Patersen and Yao [64] proved that a simple randomized auto-partition that recursively par-

titions along the supporting lines of randomly selected segments, fragments the input into

an expected O(n lg n) fragments. A dynamic ray shooting data structure for Patersen and

Yao’s algorithm leads to an expected runtime of O(n
3
2
− ε

2 ) time using O(n1+ε) space; and

an implementation with a “somewhat disappointing” runtime of O(n2 lg n) was presented

in [18]. Recently, Tóth [75] presented a deterministic auto-partition that fragments the n

input segments into O( n lgn
lg lgn

) pieces, which is best possible [74]. Another deterministic

auto-partition [73] fragments n input segments with k distinct slopes into O(kn) pieces.

These auto-partition algorithms are recursive, the partition lines depend on the previous

steps of the algorithm, and dynamic ray shooting data structures support O(n
3
2 lg n) run-

time.

We can implement BSPs and auto-partitions by inserting the partition lines as new

barriers. To partition along the supporting line of segment ` ∈ L, shoot rays from the

endpoints of `, and whenever a ray hits another segment `′, shoot a new ray from the op-

posite side of `′ in the same direction. An auto-partition that fragments the input segments
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into m pieces requires O(m) ray shooting-and-insertion queries. Our data structure sup-

ports these queries in O(n lg2 n+m lgm), slightly faster than m arbitrary queries, since in

this case many consecutive queries are collinear. In particular, with our structure the clas-

sical randomized auto-partition algorithm by Patersen and Yao [64] can be implemented

in O(n lg2 n) expected time. Similarly, Tóth’s deterministic auto-partitions can be imple-

mented in O(n lg2 n) time.

4.3.2 Computing a Convex Partition

Assume that we are given a set of disjoint polygons in the plane with a total of n vertices,

a permutation of the reflex vertices of the free space, and a half-line at each reflex vertex

that partitions the reflex angle into two convex angles. The convex partitioning algorithm

processes the reflex vertices in the specified order. For each reflex vertex, it draws a segment

emanating from the vertex along the given ray until it hits another obstacle, a previously

drawn segment, or infinity. Since every reflex angle is split into convex angles, the free

space is decomposed into convex faces.

If we are allowed to choose the permutation π, then it is easy to compute a convex

partition in O(n lg n) time: first process simultaneously all rays pointing to the right in a

left-to-right line sweep, if two segments along the rays meet, give priority to one over the

other arbitrarily; then process similarly all the rays pointing to the right in a right-to-left

sweep. However, in many applications [7, 8, 49], the order of the reflex vertices and the

rays is given online. If π is given (either in advance or online), then previously known best

data structures requires O(n
3
2
− ε

2 ) time using O(n1+ε) space. Our data structure improves

the runtime to O(n lg2 n) and uses O(n lg n) space.

4.4 Techniques

The biggest challenge in the design of our data structure was bridging the gap between

the O(lg n) query time for ray shooting in a simple polygon and the O(
√
n) query time

among disjoint obstacles with n vertices. Our data structure is based on two tools which

we describe in detail in the beginning of Section 4.5: geometric partition trees in two
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dimensions and geodesic hulls. In the remainder of Section 4.5 we introduce the types of

polygons we use in our tiling of the free space between the obstacles. In a nutshell, our data

structure—which we discuss in Section 4.6—works as follows. In each convex cell of the

geometric partition tree, we maintain the geodesic hull of all reflex vertices, which separates

the obstacles lying in the interior of the cell from all other obstacles. The geodesic hulls

form a nested structure of depth lg n that consists of weakly simple polygons and creates a

tiling of the free space. Each tile is a simple polygon that can easily be processed for fast

ray shooting queries. A ray shooting query can be answered by tracing the query ray along

these polygons.

The use of geodesic hulls allows us to control the total complexity of m ray insertion

queries. Basically, a query ray intersects the boundary of a geodesic hull only if it partitions

the set of reflex vertices into two nonempty subsets. Since a set of k points can recursively

be partitioned into nonempty subsets at most k − 1 times, we can charge the total number

intersections between rays and geodesic hulls to the number of such partition steps. We

detail this analysis in Section 4.7.

4.5 Preliminaries

4.5.1 Geometric Partition Trees

Geometric partition trees are at the core of many hierarchical data structures. A geometric

partition tree for n points in a bounding box B in Euclidean d-space Rd is a rooted tree

T of bounded degree where (1) every node u corresponds to a convex cell Cu in Rd; (2)

the root, at level 0, corresponds to B; (3) the children of every node u correspond to a

subdivision of Cu into convex cells; and (4) every cell Cu, u ∈ T , at level k of T contains

at most n
2ck

points for a constant c > 0. The convex cells Cu, for all leaf nodes u ∈ T

form a subdivision of the bounding box B. In particular, in a binary geometric partition

tree, for every non-leaf node u ∈ T , the cell Cu is partitioned into two convex cells along a

hyperplane.

The simplest geometric partition tree for a set S of n points in the plane is a binary

partition of the point set by vertical lines. All cells Cu are vertical slabs; if |S ∩ Cu| ≥ 2,
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then Cu is subdivided into two slabs by a vertical median of S ∩ Cu. This vertical slab

partition tree can be constructed inO(n lg n) time, and it was used for dynamic convex hull

computation [24] and many other early dynamic data structures [63].

Chazelle et al. [35] constructed geometric partition trees with low stabbing numbers in

O(n lg n) time. In the plane, in particular, they construct for any fixed ε > 0 a geometric

partition tree such that the total complexity of all cells is O(n) and any line stabs at most

O(n
1
2

+ε) cells, where the constants of proportionality depend on ε. They essentially al-

ternate two steps O(lg n) times: (1) decompose a triangular cell along a constant number

of lines, and (2) triangulate a cell. It follows that the tree can be represented as a binary

geometric partition tree where every cell is a convex polygon with at most O(1) vertices.

Agarwal and Sharir [5] noted that this structure can support point insertions and deletions

in O(lg2 n) amortized time using standard dynamization techniques.

(a) (b)

Figure 4.2: (a) A point set S in a simply connected polygonal domain D; (b) the geodesic
hull ghD(S).

4.5.2 Geodesic Hulls

The geodesic hull, which is also known as relative convex hull, was introduced in the dig-

ital imaging community [67] and later rediscovered in computational geometry (c.f. [76]).

It is a key concept for the best available data structures for motion planning, collision de-

tection [4, 14], and robotics [42]. The geodesic hull is a generalization of the convex hull,

restricted to some simply connected domain. For a set S of points in the plane, the convex

hull is the minimum set that contains S and is convex (i.e., contains the line segment be-

tween any two of its points). For a set S of points and a simply connected domain D, the
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geodesic hull is the minimum set that contains S ∩D, lies in D, and contains the shortest

path with respect to D between any two of its points.

The boundary of the convex hull is a convex polygon, denoted by ch(S). Toussaint [77]

showed that the boundary of a geodesic hull is a weakly simple polygon, denoted by ghD(S)

(albeit, not necessarily a simple polygon, see Fig. 4.2(b)). A weakly simple polygon on k

vertices is a closed polygonal chain (p1, p2, . . . , pk) such that for any ε > 0 the points pi
can be moved to a location p′i in the ε-neighborhood of pi so that (p′i, p

′
2, . . . , p

′
k) is a simple

polygon. Toussaint [77] also showed that ghD(S) has the property that any line segment

lying in D intersects ghD(S) in at most two points.

(a) (b)

P
P

Figure 4.3: (a) A simple crescent polygon; (b) a non-simple crescent polygon.

4.5.3 Crescent Polygons

Data structures for ray-shooting and collision detection in the plane typically use tessel-

lations of the free space between obstacles by pseudo-triangles—simple polygons with

exactly three convex angles. We construct a tessellation by crescent polygons, which are a

superset of spiral polygons. Crescent polygons are bounded by one convex polygonal chain

and at most one reflex polygonal chain (see Fig. 4.3). A polygonal chain on the boundary

of a polygon P is convex (reflex) if the interior angle of P is less (more) than π at every

internal vertex of the chain. As opposed to spiral polygons, crescent polygons do not have

to be simple—the two polygonal chains can be disjoint. That is, the family of crescent

polygons does not only include all spiral polygons (which, in particular, include convex

polygons), but also convex polygons with a convex hole (the boundary of the hole is the

reflex chain of the polygon).

55



www.manaraa.com

We build a monotone decomposition to store a crescent polygon P . A reflex vertex v

of P is y-extremal if both incident vertices are in a closed halfplane bounded by a horizon-

tal line passing through v. For each y-extremal reflex vertex v, shoot a vertical ray in the

interior of P , the ray necessarily hits the convex chain of P . (If v is both y-extremal and x-

extremal then we consider the two half-planes bounded by a horizontal line through v and

shoot the ray in that half-plane which does not contain the two polygon edges adjacent to

v.) The rays partition P into y-monotone subpolygons (see Fig. 4.3). Each subpolygon is

bounded by a monotone reflex chain, up to two vertical segments, and a convex chain. We

store the edges of the convex and the reflex chain of each subpolygon in a self-balancing

search tree; we also store the adjacency relations between the subpolygons. This mono-

tone decomposition has O(n) size for a crescent polygon with n edges and can easily be

built in O(n lg n) time. The following propositions formulate some important properties of

crescent polygons.

Proposition 4.1 A line segment inside a crescent polygon P intersects at most two sub-

polygons of P .

Proof. If the line segment s is vertical, then it is disjoint from the separators between sub-

polygons and can hence intersect only one subpolygon. Assume that s is not vertical and

crosses a vertical separator between two subpolygons P ′ and P ′′. We may also assume

without loss of generality that the separator between P ′ and P ′′ is incident to a local mini-

mum of the reflex chain of P . Then in both P ′ and P ′′, the portion of the reflex chain lies

above the line through s. Any other separator on the boundary of P ′ or P ′′ is incident to a

local maximum of the reflex chain, which must also be above the line through s. Hence s

cannot cross any other separator on the boundary of P ′ and P ′′. 2

Proposition 4.2 Let P be a crescent polygon with a reflex chain of n1 edges, a convex chain

of n2 edges, and a monotone decomposition. A ray shooting query is a triple (e, p,
−→
d ),

where e is an edge of P , p is a point on e, and
−→
d is a direction. A ray shooting query in

the interior of P can be answered in O(lg n1) time if the ray hits the reflex chain, and in

O(lg n1 + lg n2) time if it hits the convex chain.

Proof. By Proposition 4.1, the ray intersects at most two subpolygons of P . The edge e

is adjacent to a unique subpolygon, hence we know which subpolygon the ray starts from.
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We trace the ray through the subpolygons of P . In each subpolygon P ′, first detect any

intersection with the reflex chain of P ′. This takes O(lg n1) time, since the reflex chain of

P ′ is y-monotone and its edges are sorted by slope. If the ray intersects the reflex chain,

then it ends there and we can report the first point hit. Otherwise, detect any intersection

with the vertical separating segments on the boundary of P ′ inO(1) time. If the ray crosses

a separator, then it leaves to an adjacent subpolygon. Otherwise, the ray must hit the convex

chain of P ′. We can compute the first edge hit in O(lg n2) time. 2

(b)

D

ghD(S)

P1

P2
P3

P4

P5
P6

(a)

D

Q

Figure 4.4: (a) A simply connected polygonal domain D containing a set Q of polygonal
obstacles in the interior, empty circles mark the set S. (b) The exterior polygons of ghD(S)
are P1, . . . , P6.

4.5.4 Exterior, Bridge, and Double-Crescent Polygons

Let D be a simple polygon, and let Q be a set of polygonal obstacles in the interior of D.

Denote by S the set of reflex vertices of the free space int(D) \ (
⋃Q) in the interior of D

between the obstacles. D contains the geodesic hull bounded by ghD(S). The space in the

interior of D and the exterior of ghD(S) decomposes naturally into connected components

which we call the exterior polygons of ghD(S), see Fig. 4.4. We show that every exterior

polygon is a crescent polygon.

Proposition 4.3 Every exterior polygon of ghD(S) is a crescent polygon, where the convex

chain is a maximal convex chain of D and the reflex chain is a subchain of ghD(S).

Proof. If D is convex, then ghD(S) = ch(S) lies in the interior of D. The boundary of the

free space between D and ghD(S) has two connected components: an outer boundary D,
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and a hole ghD(S) = ch(S). Assume that D has k ≥ 1 reflex vertices. All reflex vertices

are in S. The boundary of the geodesic hull ghD(S) passes through all k reflex vertices of

D, but none of the convex vertices. The two endpoints of any maximal convex chain of D

are connected by two polygonal chains: the maximal convex chain of D and a polygonal

chain along ghD(S). The chain along ghD(S) is reflex, since if it had a convex angle at

an internal vertex p ∈ S, then the geodesic hull of S would not contain the shortest path

between two neighbors of p. If the length of a maximal convex chain of D is at least two,

then the two polygonal chains are different, and they bound a simple polygon. Otherwise,

both chains are reduced to the same line segment, and they do not enclose a simple polygon.

2

In our data structure, we have to deal with pairs of adjacent crescent polygons, separated

by a line. Let a double-crescent Q be a polygon bounded by at most two convex chains

and at most two reflex chains such that the two reflex chains are separated by a line `

and ` decomposes Q into two crescent polygons Q1 and Q2 (see Fig. 4.5). Let α1 and α2

be the convex chains of Q. We define two crescent polygons P (α1) and P (α2). P (α1)

is bounded by α1 and the shortest path between the endpoints of α1 inside Q; P (α2) is

defined analogously. The crescent polygons P (α1) and P (α2) are interior disjoint and are

adjacent to α1 and α2. If they do not fillQ entirely, then the space in between them is called

the bridge polygon of Q.

Proposition 4.4 A double-crescent Q has at most one bridge polygon, which is a simple

polygon bounded by two reflex chains on opposite sides of ` and two common tangents of

the reflex chains of Q.

Proof. Every internal vertex of the reflex chains of P (α1) and P (α2) is a reflex vertex of

Q. Since the reflex chains of Q are separated by a line, the overlap of the reflex chain

of P (αi), i = 1, 2, and a reflex chain of Q is a continuous polygonal chain. The reflex

chain of P (αi), i = 1, 2, consists of subchains of the two reflex chains of Q connected

by a their common external tangents, see Fig. 4.5 (c). If these common tangents are not

identical, then P (α1) and P (α2) do not fill Q entirely, and the remaining space is bounded

by a subchain of each reflex chain of Q (a subchain may also be a single edge or a vertex),

and the two common external tangents of the reflex chains. 2
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(a) (b) (c)

`

Q1

Q2

Q

`

Q1

Q2

Q
Q

P (α1)

P (α2)

Figure 4.5: (a) Double-crescentQ decomposed into two crescent polygons; (b) the common
external tangents of the two reflex chains in Q; (c) the crescent polygons P (α1) and P (α1)
and a bridge polygon.

Proposition 4.5 The common external tangents of the two reflex chains of a double-crescent

Q (and hence the decomposition of Q into P (α1), P (α2), and a possible bridge polygon)

can be computed in O(lg n) time, where n is the total number of edges in the two reflex

chains.

Proof. By Proposition 4.1, line `, which forms the common boundary of Q1 and Q2, inter-

sects at most two subpolygons in each of Q1 and Q2. All common tangents of the reflex

chains of Q1 and Q2 cross `, and so they may intersect the subpolygons along ` and adja-

cent subpolygons in the decomposition of Q1 and Q2. The common external tangents of

the reflex chains of Q are common external tangents of two reflex chains in some pair of

these subpolygons. We have O(1) pairs of subpolygons of Q1 and Q2 to consider. In each

pair, the common tangents can be computed in O(lg n) time [63], since the reflex chain in

each subpolygon is y-monotone. Out of O(1) common tangents of reflex subchains, we

can select the common external tangents of the two reflex subchains of Q in O(1) time. 2

Our data structure in Section 4.6 tiles the exterior of a geodesic hull with (exterior) crescent

polygons. The interior of a geodesic hull is tiled with obstacles, crescent, and double cres-

cent polygons. Hence the free space between the obstacles can be tiled with crescent and

bridge polygons, where the crescent polygons are either interior or exterior to a geodesic

hull. The details can be found in the next section.
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4.6 Data structure

In this section, we present our data structure and establish bounds on its space complexity

and preprocessing time. Our structure directly gives a tessellation of the free space between

the obstacles into crescent polygons and bridge polygons. We can answer a ray shooting

query by simply tracing the ray through the tessellation. The update of our data structure

after inserting the query ray as a new obstacle is discussed in Section 4.7.

4.6.1 Description

We are given a set P of pairwise disjoint polygons with a total of n vertices lying in the

interior of a bounding box B. Let F = int(B) \ (
⋃P) denote the free space between the

obstacles. Denote by S the set of reflex vertices of the free space (that is, convex vertices

of the obstacles). The backbone of our data structure is a binary geometric partition tree

T for the point set S, where the root corresponds to the bounding box B. The choice of

the partition tree has no effect on our results for the total processing time of m queries; it

affects only the time required for a single query. If we use a suitable geometric partition tree

of low stabbing number as proposed by Chazelle et al. [35], then each query is processed

in O(n
1
2

+ε lgm) time for any fixed ε > 0, where the constant of proportionality depends

on ε. We augment the geometric partition tree T , and store several structures related to the

portion of the obstacles clipped in Cu at each node u ∈ T . Recall that

• Cu is the convex cell associated with node u ∈ T ; and

• `u is the line splitting cell Cu into two subcells at a non-leaf node u ∈ T .

• Let Su = S ∩ Cu be the set of reflex vertices of the free space in cell Cu;

• let Pu denote the set of obstacles that intersect the boundary of Cu;

• let Qu denote the obstacles lying in the interior of Cu (see Fig. 4.6 (a));

• letQ∗u ⊆ Qu denote the obstaclesQu that intersect the splitting line `u (in particular,

obstacles in Q∗u are in the interior of cell Cu but not in the interior of any subcell of

Cu).
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At the root u0 ∈ T , we have Cu0 = B, Pu0 = ∅, and Qu0 = P . In general, the set Cu \
(
⋃Pu) is the union of the free space clipped in Cu and all obstacles inQu. Each connected

component of Cu \ (
⋃Pu) is a simply connected polygonal domain (see Fig. 4.6(b)). At

node u ∈ T , we store all components of Cu \ (
⋃Pu) that are incident to some vertex in S.

Each of them is stored in a doubly linked edge list (components of Cu \ (
⋃Pu) that are not

incident to any reflex vertices of obstacles are not stored).

• Let Du denote the set of the components of Cu \ (
⋃Pu) stored at u.

For each polygonal domain D ∈ Du, we store ghD(S) and every exterior polygon of

ghD(S) (see Fig. 4.6 (c)). Further, for every non-leaf node, we store pointers between

(c)

Cu

(d)

CwCv `u

P

(a)

Cu

(b)

Cu

D1 D2

Figure 4.6: (a) A set P of polygonal obstacles that intersect in a cell Cu; (b) Cu \ (
⋃Pu)

consists of two simply connected polygonal domains D1 and D2; (c) the geodesic hulls
ghDi(S) for i = 1, 2; (d) ghD2

(S) is decomposed into the geodesic hulls ghD−
2

(S) and
ghD+

2
(S), the obstacle P lying in the interior of Cu but intersecting line `u, and some

bridge polygons.

some adjacent domains and exterior polygons. If u ∈ T is a non-leaf node, then cell Cu is

split along line `u into two subcells, say Cv = Cu ∩ `−u and Cw = Cu ∩ `+, where v, w ∈ T
are the two children of u. Consider a domain D ∈ Du that intersects the splitting line `u
and contains some vertices in S on both sides of `u. Note that the sets D− = D ∩ `−u ∈ Dv
and D+ = D ∩ `+

u ∈ Dw may each be disconnected (see Fig. 4.6(d)). If a connected

component D̂ of D− or D+ contains a vertex of S, then it contains a unique domain stored

atDv orDw, respectively, which is obtained asEv = D̂\(⋃Pv) orEw = D̂\(⋃Pw), after

removing the obstacles of Qu that intersect `u. For each domain D ∈ Dv (resp., Dw), we

maintain a pointer to the domain of Du that contains it. For each exterior polygon of each
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ghEv(S), Ev ∈ Dv, along line `u, we maintain a pointer to the adjacent exterior polygon on

the opposite side of `u, which is an exterior polygon of ghEw(S) for some Ew ∈ Dw.

Finally, we store a tessellation of the bounding box B. By construction, any two do-

mains in our data structure, D1 and D2, are either interior disjoint or nested (that is, one

contains the other). The geodesic hulls ghD1
(S) and ghD2

(S) are interior disjoint if the

domains D1 and D2 are interior disjoint; and ghD1
(S) lies inside ghD2

(S) if D1 ⊆ D2.

Therefore, no two edges of two geodesic hulls stored in our data structure cross. We obtain

a planar graph, denoted by G, as a union of the edges of B, the edges of all obstacles, and

the edges of the geodesic hulls ghD(S) for allD ∈ Du, u ∈ T . The graphG is a tessellation

of the bounding box B, where some of the faces are crescent polygons (c.f., Lemma 4.2

below). We store G, and we store each crescent polygon with a monotone decomposition

as described in Section 4.5. This completes the description of our data structure.

4.6.2 Structural Properties

We next present a few lemmas on the structure of the tessellation in the exterior and the

interior of a geodesic hull ghD(S) in a domain D ∈ Du for a node u ∈ T . Let u ∈ T be

a non-leaf node in our data structure, with children v and w. Let D ∈ Du be a domain,

which is incident to at least one vertex in S. Assume that the splitting line `u intersects D,

and D ∩ S contains vertices on both sides of `u.

Lemma 4.1 Consider an edge e of the geodesic hull ghD(S) which is not an edge of

ghE(S) for any domain E ∈ Dv ∪ Dw.

1. e lies in the union of a domain Ev ∈ Dv and a domain Ew ∈ Dw;

2. e lies in the union of an exterior polygon Pv of ghEv(S) and an exterior polygon Pw
of ghEw(S);

3. both Pv and Pw are adjacent to the splitting line `u and to the boundary ∂D of D;

4. e is the common tangent of the reflex chain of the double-crescent polygon Pv ∪ Pw.

Proof. The splitting line `u decomposes domainD into subdomains. Every edge of ghD(S)

that lies entirely in a subdomain E ∈ Dv ∪ Dw is an edge of ghE(S). So we may assume
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that edge e is not contained in any domain E ∈ Dv ∪Dw, and so it crosses the splitting line

`u.

1. Since e crosses `u at most once, it can intersect at most two subdomains of D, at

most one on each side of `u. Denote these domains by Ev ∈ Dv and Ew ∈ Dw.

2. Since the geodesic hulls ghEv(S) and ghEw(S) are nested in ghD(S), the edge e

cannot cross any edge of ghEv(S) or ghEw(S). It must lie in the exterior of both ghEv(S)

and ghEw(S). SinceEv andEw are separated by the line `u, the edge e can intersect at most

one exterior polygon of each of ghEv(S) and ghEw(S). Denote these exterior polygons by

Pv ⊂ Ev and Pw ⊂ Ew.

3. If Pv is not adjacent to `u, then no shortest path between S ∩D can enter the interior

of Pv. If Pv is adjacent to `u but not adjacent to the boundary of D, then it is adjacent

to some obstacles in Qu, which lie in the interior of D. Since every obstacle in Qu is

contained in ghD(S), the polygon Pv is also contained in ghD(S). Therefore, if e lies in

Pv, then Pv is adjacent to `u and to ∂D. The same argument holds for Pw.

4. On the boundaries of the exterior polygons Pv and Pw, all vertices of S are in two

reflex chains, which we denote by βv ⊂ ghEv(S) and βw ⊂ ghEw(S), respectively. The

two chains are separated by the line `u. Since the geodesic hull of S ∩ D with respect

to D contains the shortest path between any two points of S, it contains all line segments

between the reflex chains on the boundaries of Pv and Pw. The edge e is on the convex hull

ch(βv ∪ βw), and so e is a common tangent of the arcs βv and βw. 2 Next, we study the

tiling of the interior of ghD(S).

Lemma 4.2 The interior of ghD(S) is tiled by the following interior disjoint polygons.

(i) geodesic hulls ghE(S), for some E ∈ Dv ∪ Dw, E ⊂ D;

(ii) obstacles in Q∗u, which are in the interior of D;

(iii) crescent polygons along the boundary of obstacles inQ∗u, which are contained in D;

(iv) bridge polygons in the union of any two adjacent exterior polygons of ghEv(S) and

ghEw(S), for any Ev ∪ Ew ⊆ D, Ev ∈ Dv and Ew ∈ Dw on opposite sides of `u.

Proof. It is clear that ghD(S) contains all geodesic hulls ghE(S), for all E ∈ Dv ∪ Dw,

E ⊂ D. Every obstacle in the interior of Cv or Cw is contained in the geodesic hull ghE(S)
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for some E ∈ Dv ∪ Dw. All obstacles in Qu, which lie in the interior of D, are contained

in ghD(S). However, only the obstacles inQ∗u are not contained in smaller nested geodesic

hulls. If an obstacle is contained in ghD(S), then all adjacent crescent polygons are also

contained in ghD(S), since a geodesic hull of reflex vertices cannot separate an obstacle

from an adjacent crescent polygon. It follows that the polygons of type (i), (ii), and (iii) are

all contained in ghD(S). It is clear that they are interior disjoint. It remains to show that

any remaining tile is a bridge polygon.

Delete all polygons of type (i), (ii), and (iii) from the interior of ghD(S), and let P be

a connected component of the remaining space. Since P is outside of the geodesic hulls

ghE(S) for any E ∈ Dv ∪ Dw, it must be contained in exterior polygons. An exterior

polygon of ghE(S), E ∈ Dv ∪ Dw, is a crescent polygon, bounded by a convex chain β

and a subchain of ghE(S). If β is disjoint from the boundary of Cv, then β is a maximal

convex chain along an obstacle in Q∗u, hence the exterior polygon is a crescent polygon

adjacent to an obstacle in Q∗u. If β touches the boundary of Cu but is disjoint from `u, then

the exterior polygon is exterior to ghD(S), too, and it is disjoint from P . So P is contained

in the exterior polygons of some ghE(S), E ∈ Dv ∪ Dw that lie in the interior of Cu and

are adjacent to `u.

Consider two adjacent exterior polygons Q1 and Q2 on opposite sides of `u such that

P intersects their union Q1 ∪ Q2 (see Fig. 4.5). Let s ⊂ `u be a common edge of Q1

and Q2, and let α1 and α2 be the two maximal convex chains along obstacles that contain

the endpoints of s. By Proposition 4.4, the union Q1 ∪ Q2 of the two exterior polygons is

covered by the crescent polygons of α1 and α2, and a possible bridge polygon R. Since P

is disjoint from crescent polygons, we have P ⊆ R. The bridge polygon R lies in the free

space and it is bounded by two geodesics of ghEv(S), Ev ∈ Dv, and ghEw(S), Ew ∈ Dw;

and by two of their common external tangents. Therefore, R is interior disjoint from any

polygon of type (i), (ii), and (iii); and so P = R. 2

Corollary 4.1 The free space between two nested layers of geodesic hulls in our data struc-

ture is tiled with crescent polygons and bridge polygons.

We next study the position of a line segment in the free space with respect to the domains

stored in our data structure and the tiling G.
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Lemma 4.3 Let pq be a line segment lying in the free space.

1. For every u ∈ T , segment pq intersects at most one domain D ∈ Du.

2. Segment pq intersects at most two crescent polygons in the tessellation G of B.

3. For every u ∈ T , segment pq intersects at most one bridge polygon within ghD(S),

D ∈ Du.

Proof. 1. If pq contains points a ∈ Da and b ∈ Db, with Da, Db ∈ Du, then the line

segment ab ⊆ pq lies in the convex cell Cu. Since Da, Db ⊂ Cu are separated by obstacles

in P , segment ab must traverse an obstacle, contradicting the assumption that pq lies in the

free space.

2. Each crescent polygon is bounded by a convex chain along an obstacle P and a reflex

chain. If a ray −→pq enters a crescent polygon P , it enters through its reflex chain and hits the

convex chain along P . Since the rays −→pq and −→qp can hit at most two convex chains along

obstacles, pq intersects at most two crescent polygons.

3. If pq intersects two distinct bridge polygons in the tiling of ghD(S), denote by

R1, R2 ⊂ D two consecutive bridge polygons along pq. Let a, b ∈ pq be the closest

points on the boundaries of R1 an R2, respectively. Since bridge polygons are not adjacent,

we have a 6= b, and segment ab ⊂ pq does not pass through any other bridge in ghD(S).

The segment ab cannot cross `u, since all points of `u in the interior of ghD(S) are covered

by obstacles, crescent polygons, and bridges. Hence, ab lies on one side of the line `u, and

so ab lies in some domain E ∈ Dv ∪ Dw, E ⊂ D. That is, ab connects two points along

ghE(S), while the relative interior of ab is in the exterior of ghE(S). This contradicts the

fact that the shortest path between any two points along ghE(S) passes in the geodesic hull

of S ∩ E with respect to E. 2

4.6.3 Space

A binary geometric partition tree T for n points in the plane has O(n) nodes and O(lg n)

height. A node u ∈ T stores a convex cell Cu, of constant complexity, and a splitting line

`u. Every vertex of a domain D ∈ Du is either a vertex of an obstacle or the intersection of

an edge of an obstacle and the boundary of the cell Cu. Since Cu has O(1) edges, a domain
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D ∈ Du has at most O(1) consecutive vertices that are not vertices of any obstacle. Recall

that a domain D ∈ Du is stored only if it contains at least one reflex vertex in S. Every

vertex in S lies in at most O(lg n) cells Cu (at most one on each level of T ), hence the

domains D ∈ Du for all u ∈ T have a total of O(n lg n) vertices. All vertices of ghD(S)

are in S, and each vertex p ∈ S occurs in O(lg n) geodesic hulls (one at each level of T ),

hence the total complexity of ghD(S) for all D ∈ Du and u ∈ T is O(n lg n). Finally, the

planar straight line graph G has n vertices and O(n) edges. So the total size of all crescent

and bridge polygons of G is O(n).

4.6.4 Preprocessing

A binary geometric partition tree T for n points can be computed inO(n lg n) time, for both

the vertical slab tree [63] or the one with low stabbing number [35]. In a top-down traversal

of the tree T , we can compute all domains D ∈ Du, the sets Su of reflex vertices lying in

Cu, and the sets Qu of obstacles in the interior of Cu. At the root u0, we have Du0 = {B}.
If a domain D ∈ Du intersects the splitting line `u, it is decomposed into subdomains as

follows: test every edge along the boundary of D and every edge of obstacles lying in the

interior of D, whether they intersect `u. The intersection points of `u with the edges of ∂D

can be sorted along `u by traversing the boundary of the simple polygon D. We can insert

into this sorted list each intersection with obstacles in Qu in O(lg n) time. We can trace

out the boundary of each subdomain of D by traversing the edges of D, the portions of

`u between consecutive intersection points, and the boundaries of obstacles Qu crossed by

line `u. We discard any subdomain of D that is not incident to any reflex vertex in S. We

spend O(lg n) time per edge for sorting edges of the obstacles in Qu stabbed by `u, which

were in the interior of domain D but will be on the boundary of subdomains of D; and we

spend O(1) time for each edge of each domain D ∈ Du. Over each of the O(lg n) levels of

T , we spend O(n) time traversing the edges of the domains and the obstacles. For each of

the O(n) obstacles, we spend O(lg n) time when it is first crossed by a splitting line `u, and

we insert it into the sorted order the intersections of `u with the boundary of a domain. For

all u ∈ T , we compute all domains D ∈ Du, sets Su, and sets Qu in O(n lg n) total time.

We compute the crescent polygons and the geodesic hulls ghD(S) for all D ∈ Du,
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u ∈ T , in a bottom-up traversal of T . Note that for any polygonal domain D ∈ Du, u ∈ T ,

all reflex vertices of D are in Su. If u ∈ T is a leaf, then cell Cu contains exactly one vertex

of S, and the geodesic hull ghD(S) is a single point. Assume now that u ∈ T is a non-leaf

node with children v and w, the geodesic hull ghE(S) has been computed for every subdo-

main E ∈ Dv ∪ Dw, E ⊂ D, and we want to compute ghD(S). By Lemma 4.1, we obtain

all new edges of ghD(S) and any crescent polygon contained in ghD(S) by computing the

common external tangents of two reflex polygonal arcs along adjacent exterior polygons of

Ev ∈ Dv and Ew ∈ Dw. By Proposition 4.5, each common external tangent can be com-

puted in O(lg n) time. Since G is a planar graph with n vertices and O(n) edges, a total of

O(n) common tangents are computed. Hence we can compute all geodesic hulls ghD(S)

and crescent polygons in O(n lg n) total time. The total size of all crescent polygons in

the tiling G is O(n), and so we can compute a monotone decomposition for each crescent

polygon in the tessellation in O(n lg n) total time.

4.7 Ray Tracing and Update Operations

4.7.1 A Single Ray Shooting-and-Insertion Query

Given a point p on the boundary of an obstacle and a direction dp, we answer the associated

ray shooting query by tracing the ray through the bridge and crescent polygons of the

tessellation G until it hits the boundary of an obstacle or leaves the convex hull ch(S). By

Proposition 4.2, we can trace a ray through these polygons in logarithmic time in terms of

the number of vertices. Recall that after insertingO(m) rays, the number of convex vertices

is O(n + m) but the number of reflex vertices remains O(n). Therefore, ray shooting in a

crescent or bridge polygon takes O(lg n) time if the ray hits a reflex chain or line `u; and it

takes O(lg(m+ n)) time if it hits a convex chain. Since convex chains lie on the boundary

of obstacles, each ray hits at most one convex chain. So if the segment pq traverses k

faces of the tessellation G, then the ray shooting query takes O(k lg n + lg(m + n)) =

O(k lg n+ lgm) time.

After answering the ray shooting query, we also insert the portion of the ray between

the starting point p and the first point q where it hits an obstacle as a new obstacle into our
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Figure 4.7: Cases for updating a domain D ∈ Du depending on the position of the segment
pq w.r.t. D.

data structure. The tree T (and the corresponding hierarchical cell decomposition) remains

the same.

First, we update the set of domains Du, u ∈ T . As before, let v and w denote the

children of a non-leaf node u ∈ T . In a top-down traversal of the tree T , detect all domains

D ∈ Du that intersect pq. By Lemma 4.3, pq intersects at most one domain D ∈ Du for

each u ∈ T . We distinguish four cases depending on the position of pq within D ∈ Du
(refer to Fig. 4.7). (1) If pq is disjoint from D, then no update is necessary, and there is no

need to descend to the polygons of Dv and Dw contained in D. (2) If pq lies in the interior

of D (that is, its endpoints lie on obstacles in the interior of D), then D is not updated,

but we descend to the domains of Dv and Dw contained in D. (3) If pq has exactly one

endpoint in the interior of D, say p, which is incident to an obstacle P in the interior of D,

then we update D by appending the edges pq ∩D and all edges of P to the boundary of D;

and descend to its subdomains in Dv and Dw. (4) Finally, if pq intersects the boundary of

D twice, then we split D into two domains; and descend to its subdomains in Dv and Dw.

We have identified all domainsD that intersect the segment pq. In each domainD ∈ Du
along pq, we also update the geodesic hulls ghD(S). This is done in a bottom up traversal

of the tree T . When processing the geodesic hull with respect to D ∈ Du, u ∈ T , assume

that the geodesic hulls ghE(S) have been updated for all E ∈ Dv ∪ Dw at the children

v, w ∈ T of u. Note that ghD(S) changes only if the domain D changes, that is, in cases

(3) and (4) above.
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Figure 4.8: The geodesic hulls ghD(S) for D ∈ Dv ∪Dw before (a) and after (b) inserting

segment pq. The geodesic hulls ghD(S) for D ∈ Du before (c) and after (d) inserting

segment pq.

By Lemma 4.3, segment pq crosses at most two edges of ghD(S), these edges have to

be removed. By Lemma 4.1, every edge of a crescent polygon or ghD(S) that is not an

edge of any ghE(S), E ∈ Dv ∪ Dw, is a common external tangent of two reflex arcs in

two exterior polygons of some ghEv(S) and ghEw(S) for some Ev ∈ Dv and Ew ∈ Dw
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that are adjacent to line `u. It follows that an update is necessary only if the two exterior

polygons are adjacent to line `u and the segment pq. There are two pairs of such extremal

polygons, one on each side of pq. It is enough to compute the common external tangents

between ghEv(S) and ghEw(S) in these two pairs of exterior polygons. Hence, we can

update the geodesic ghD(S) and the crescent polygons ofQ∗u by deleting two edges crossed

by pq and inserting two new common external tangents between two reflex arcs of ghEv(S)

and ghEw(S). Since any two reflex arcs have a total of O(n) vertices, we can update the

geodesic hull in ghD(S) in O(lg n) time by Proposition 4.5.

4.7.2 Time Complexity of m Successive Queries

For a segment pq in the free space, denote by tr(pq) the number of geodesic hulls ghD(S)

on all levels of T whose edges cross pq. We need to update all tr(pq) geodesic hulls along

pq (some of which may split into two parts). We have seen that the ith ray shooting query

takes O(tr(piqi) lg n + lg i) time. The insertion of the ith segment piqi as a new obstacle

takes O(tr(piqi) lg n)) time. The total runtime of processing m successive rays shooting

and insertion queries is

O

((
m∑
i=1

tr(piqi)

)
lg n+m lgm

)
.

Proposition 4.6 For m successive ray shooting-and-insertion queries, we have

m∑
i=1

tr(piqi) = O((n+m) lg n).

Proof. The tree T has O(lg n) levels. The domains D ∈ Du, for all nodes u on one level

of T , are pairwise interior-disjoint, and they partition S into subsets S ∩ D. Hence, the

geodesic hulls ghD(S) are pairwise disjoint on each level of T . We deduce an upper bound

on the number of crossings between query segments piqi and the edges of the geodesic

hulls on one level of T . By Lemma 4.3, a segment piqi crosses at most two edges of each

geodesic hull ghD(S).
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We distinguish two cases. (1) If piqi crosses one edge of ghD(S), then one endpoint of

piqi lies in the interior of ghD(S). Since the geodesic hulls are disjoint a level of T , each

point pi or qi lies in the interior of at most one geodesic hull ghD(S). The number of this

type of crossings is at most 2m. (2) If piqi crosses two edges of ghD(S), then it partitions

D into two domains, each containing some vertices of S. Since a set of cardinality k can

recursively be partitioned into nonempty subsets at most k − 1 times, the sets D ∩ S on

each level are partitioned at most O(n) times. Hence the number of this type of crossings

is at most O(n). Summing both types of crossings over all O(lg n) levels of T , we obtain∑m
i=1 tr(piqi) = O((n+m) lg n). 2 The total runtime

of m successive ray shooting-and-insertion queries is O((n + m) lg2 n + m lgm). If the

geometric partition tree T is arbitrary, then tr(pq) = Θ(n lg n) is possible and the ith ray

shooting-and-insertion query takes O(n lg2 n + lg i) time. However, if we use a geometric

partition tree T of low stabbing number, then every line intersect at mostO(n
1
2

+δ) cells Cu,

u ∈ T . By Lemma 4.3(1), a line segment in the free space intersects at most one domain

D ∈ Du and at most one geodesic hull ghD(S) in cell Cu, and so tr(pq) = O(n
1
2

+δ lg n).

Hence the ith ray shooting-and-insertion query takesO(n
1
2

+δ lg2 n+lg i) ≤ O(n
1
2

+2δ+lg i)

for any fixed δ > 0.

4.7.3 Collinear Ray Shooting-and-Insertion Queries

In our application in auto-partitions, many consecutive ray shooting-and-insertion queries

are collinear. Recall that for a partition step along the supporting line of an obstacle segment

` ∈ L, we shoot rays from the endpoints of `, and whenever a ray hits another obstacle

segment `′, we shoot a new ray from the opposite side of `′ in the same direction. An

auto-partition that fragments n disjoint input segments into m pieces can be implemented

with 2n + m ray shooting-and-insertion queries. Since there are 2n groups of consecutive

collinear queries, we can slightly improve the general runtime ofO((n+m) lg2 n+m lgm)

to O(n lg2 n + m lgm). In particular, if m = O(n lg n), then the total runtime becomes

O(n lg2 n).

Proposition 4.7 Suppose that m successive ray shooting-and-insertion queries are ar-

ranged into m0 groups of consecutive collinear queries such that if i and i + 1 are in
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the same group, then points qi and pi+1 are on the boundary of the same obstacle. Then we

have
∑m

i=1 tr(piqi) = O((n+m0) lg n).

Proof. For j = 1, . . . ,m0, denote by ajbj the convex hull of the j-th group of collinear

segments piqi. The tree T has O(lg n) levels. The domains D ∈ Du, for all nodes u on

each level of T , are pairwise interior-disjoint, and they partition S into subsets S ∩ D.

Hence, the geodesic hulls ghD(S) are pairwise disjoint on each level of T .

We deduce an upper bound on the number of crossings between query segments piqi
and the edges of the geodesic hulls on one level of T . Recall that each geodesic hull

ghD(S) is simply connected. If the consecutive and collinear query segments along ajbj
cross r edges of a geodesic hull ghD(S) and ajbj has 0 (resp., 1 or 2) endpoints in the

interior of ghD(S), then ajbj decomposes ghD(S) into r
2

(resp., r−1
2

or r−2
2

) pieces; and it

also partitions the setD∩S into the same number of subsets. If aj (bj) lies in the interior of

ghD(S), then we charge the nearest crossing to point aj (bj). We charge all other crossings

to the partitioning of set D ∩ S. Since the geodesic hulls ghD(S) are pairwise disjoint on

one level of T , we charge at most 2m0 crossings to the points aj , bj , for j = 1, 2 . . . ,m0.

Since a set of cardinality k can recursively be partitioned into nonempty subsets at most

k − 1 times, we charge at most O(n) to the partitioning of the sets D ∩ S. Summing the

crossings over O(lg n) levels, we obtain
∑m

i=1 tr(piqi) = O((n+m0) lg n). 2

4.8 Conclusion

We proposed a data structure for disjoint polygonal obstacles in the plane with n vertices

that supports m ray shooting-and-insertion queries in O((n + m) lg2 n + m lgm) total

time and O((n + m) lg n) space. Our data structure applies, with minimal adjustments, to

polygons with holes having a total of n vertices. With our data structure, we improve the

expected runtime of Patersen and Yao’s classical randomized auto-partition algorithm for

n disjoint line segments in the plane to O(n lg2 n). Also the convex partition of the free

space between n disjoint line segments in the plane (with m = n), where the segments are

extended beyond their endpoints in a specified order, can now be computed in O(n lg2 n)

time and O(n lg n) space. It remains a challenge for future research to find an O(n lg n)
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time algorithm.

It was essential for our techniques that the obstacles are polygonal. We believe that our

techniques can be extended to handle curvilinear polygons, bounded by arcs of algebraic

curves of bounded degree. Typically, n such arcs can be decomposed into a finite number

of locally convex or concave arcs, and be approximated well enough by polygonal arcs

with a total of O(n) vertices. The extension of our data structure to disjoint obstacles of

bounded description complexity is left for future work.
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Chapter 5

Convex Partitions with
2-Edge-Connected Dual Graphs

Convex partitioning decomposes a complex geometric object into convex parts. It is a

very useful tool in computer graphics, motion planning, and geometric modeling. Given a

set of convex polygonal obstacles and a bounding box, we may think of the bounding box

as a simple polygon and the obstacles as polygonal holes. Then the problem of creating a

convex partition becomes that of decomposing the simple polygon with holes into convex

parts. Convex polygonal decomposition has received considerable attention in the field of

computational geometry. The focus has been to produce a decomposition with as few con-

vex parts as possible. Lingas [59] showed that finding the minimum convex decomposition

(decomposing the polygon into the fewest number of convex parts) is NP-hard for polygons

with holes. For polygons without holes, however, minimum convex decompositions can be

computed in polynomial time [29, 54]—see [53] for a survey on polygonal decomposition.

While minimum convex decomposition is desirable, it is not the only criterion for the

goodness of a convex partition (decomposition). In fact, the measure of the quality of a

convex partition can be specific to the application domain. In Lien’s and Amato’s work

Convex Partitions with 2-Edge Connected Dual Graphs, Marwan Al-Jubeh, Michael Hoffmann, Mash-
hood Ishaque, Diane L. Souvaine, and Csaba D. Tóth. A version of this work is to appear in the Special
issue of Journal of Combinatorial Optimization, 2010. Previously published in the proceedings of 15th In-
ternational Computing and Combinatorics Conference, 2009. Abstract appeared in 18th Fall Workshop on
Computational Geometry, 2008.
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on approximate convex decomposition [58] with applications in skeleton extraction, the

goal is to produce an approximate (not all cells are convex) convex partition that highlights

salient features. In the equitable convex partitioning problem, all convex cells are required

to have the same value of some measure e.g. the same number of red and blues points [52],

or the same area [22] (with application to vehicle routing).

Another criterion for the quality of a convex partition might be some property of its dual

graph (the definition of dual graph varies from application to application). A dual graph

might represent a communication network whose desired characteristic is fault tolerance

(no single point of failure). We consider the problem of creating convex partitions with

2-edge connected dual graphs.

Problem Definition: For any finite set of disjoint convex polygonal obstacles

in the plane, with a total of n vertices, partition the free space between the

obstacles into into open convex cells such that the dual graph of the convex

partition is 2-edge connected.

5.1 Convex Partitions and Dual Graphs

For a finite set S of disjoint convex polygonal obstacles in the plane R2, a convex partition

of the free space R2 \ (
⋃
S) is a set C of open convex regions (called cells) such that the

cells are pairwise disjoint and their closures cover the entire free space. Since every vertex

of an obstacle is a reflex vertex of the free space, it must be incident to at least two cells. Let

σ be an assignment of every vertex to two adjacent convex cells in C. A convex partition C

and an assignment σ define a dual graph D(C, σ): the cells in C correspond to the nodes

of the dual graph, and each vertex v of an obstacle corresponds to an edge between the

two cells assigned to v (see Fig. 5.1). Double edges are possible, corresponding to two

endpoints of a line-segment obstacle on the common boundary of two cells.

It is straight forward to construct an arbitrary convex partition for a set of convex poly-

gons as follows. Let V denote the set of vertices of the obstacles; each vertex of a convex

obstacle is reflex. Let π be a permutation on V . Process the vertices in the order π. For

a vertex v ∈ V , draw a directed line segment (called extension) that starts from the vertex
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(a) (b)

(c) (d)

Figure 5.1: (a) Five obstacles with a total of 12 vertices. (b) A convex partition. (c) An
assignment σ. (d) The resulting dual graph.

along the angle bisector. For a line-segment obstacle, the extension is drawn along the

supporting line. The extension ends when it hits another obstacle, a previous extension, or

infinity (the bounding box). For k convex obstacles with a total of n vertices, this naı̈ve al-

gorithm produces a convex partition with n−k+1 cells, if no two extensions are collinear.

For example, for n disjoint line segments (with 2n endpoints) in general position, we obtain

n+ 1 cells. If the obstacles are in general position, then each vertex v is incident to exactly

two cells, lying on opposite sides of the extension emanating from v. Hence the assignment

σ is unique, and the choice of permutation π completely determines the dual graph D(π).

We call this a STRAIGHT-FORWARD convex partition, and a STRAIGHT-FORWARD dual
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graph, which depends only on the permutation π of the vertices.

5.2 Related Problems

5.2.1 Disjoint Compatible Matchings

A plane matching is a set of n disjoint line segments in the plane, which is a perfect match-

ing on the 2n endpoints. Two plane matchings on the same vertex set are compatible if

there are no two edges that cross, and are disjoint if there is no shared edge. Aichholzer

et al. [7] conjectured that for every plane matching on 4n vertices, there is a disjoint com-

patible plane matching. (compatible geometric matchings conjecture). They proved that

their conjecture holds if the 2n segments in the matching admit a convex partition whose

dual graph is the union of two edge-disjoint spanning trees, and the two endpoints of each

segment corresponds to distinct spanning trees. Aichholzer et al. further conjectured for

the 4n endpoints of 2n line segments in the plane, there is a permutation π such that D(π)

is the union of two edge-disjoint spanning trees (two spanning trees conjecture).

The conjecture would immediately imply that such a dual graph is 2-edge connected.

Benbernou et al. [15] claimed that there is always a permutation π such thatD(π) is 2-edge

connected—but there was a flaw in their argument [16].

In Section 5.4 we prove that such permutation π does not always exist, thus refute the

two spanning trees conjecture of Aichholzer et al. [7].

5.2.2 Fault-Tolerant Wireless Networks

In today’s information age, users of mobile phones, wireless data services, and GPS de-

vices etc, have come to expect ubiquitous access to information—anywhere, anytime. The

providers of these services try to meet the needs of their demanding customers or risk los-

ing business. But it is difficult to provide uninterrupted service in the presence of obstacles

such as tall buildings in a city (e.g. Manhattan) that may impede the signals from satellites

or cell towers. Underground subways pose a similar problem. One possible solution is to

install inexpensive radio devices on the boundaries of these obstacles, which can commu-

nicate with each other and provide connectivity to the users. We can model the obstacles as
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convex polygons in the plane, and place radios on the boundaries of these obstacles. Our

goal is to partition the service areas between radios such that (i) each radio serves clients

in two designated convex areas, and (ii) between any two clients there are at least two dis-

joint sequences of radios such that consecutive radios are not occluded by obstacles. The

purpose of the second condition is to provide fault-tolerance so that clients can still have

access even when one of the radios responsible for the area fails. The communication net-

work of these radio devices is exactly the dual graph defined above. If the radios are placed

at the corners of all obstacles, then we can designate two convex regions to each radio with

properties (i) and (ii). The result can also be applied to sensor networks in the sense of Tan

et al. [70].

5.3 Results

• We show instances where no permutation π produces a STRAIGHT-FORWARD dual

graph D(π) that is 2-edge connected (Section 5.4). This is a counterexample to a

conjecture by Aichholzer et al. [7].

• We show that for every finite set of disjoint convex polygons in the plane there is

a convex partition (not necessarily STRAIGHT-FORWARD) and an assignment that

produces a 2-edge connected dual graph (Section 5.5). The dual graph has the same

number of nodes as in the case of STRAIGHT-FORWARD convex partition.

5.4 Counterexample for Two Spanning Trees Conjecture

Theorem 5.1 For every n ≥ 15, there are n disjoint line segments in the plane such that the

dual graph D(π) has a bridge (cut-edge—removing this edge disconnects the dual graph)

for every permutation π.

Proof. We show that for the 15 line segments in Fig. 5.2, every permutation π pro-

duces a STRAIGHT-FORWARD dual graph D(π) with a bridge (cut-edge). Our construc-

tion consists of three rotationally symmetric copies of a configuration with 5 segments
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Figure 5.2: Counterexample with n = 15.
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{A1, A2, . . . , A5}, which we call a star structure. We can generate larger constructions by

adding segments whose supporting lines avoid the convex hull of this configuration.

In Fig. 5.2 the dotted lines represent the arrangement of all possible extensions of the

given line segments. Denote the right endpoint of a segment by ‘+’ and the left endpoint by

‘−’ in the star structure A. The set of all possible permutations can be described in terms

of only two cases by focusing on the star structure A. The structures B and C are copies of

A rotated around the origin O.
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3 hit the segments A1 and A4, respectively.

Figure 5.3: Permutations for the counterexample.

Case 1. The extensions from endpoints A−3 and A+
3 hit the segments A1 and A4, respec-

tively; i.e. the extensions from endpointsA+
2 andA−5 terminate either at the extensions from

endpoints A−3 and A+
3 , respectively or earlier (Fig. 5.3). It can be easily verified that in this
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case every permutation of the four endpoints {A+
1 , A

+
2 , A

−
4 , A

−
5 } produces a bridge in the

dual graph. The same reasoning applies to the structures B and C because of symmetry.

Case 2. Therefore, to avoid a bridge in the dual graph, there must be at least one endpoint in

each star structure whose extension goes beyond the structure. Since when two extensions

meet in a STRAIGHT-FORWARD convex partition, one of the extensions must continue in a

straight line, at least one of these three endpoints will have its extension hit a segment (A3,

B3 or C3) in a different structure. Assume w.l.o.g segment A3 is hit by an extension e from

either B+
2 or C−5 . Then an extension from either A+

2 or A−5 hits e, which together with A−3
or A+

3 creates a bridge in the dual graph. 2

5.5 Constructing a Convex Partition

We showed in Section 5.4 that in some instances, no STRAIGHT-FORWARD dual graph is

2-edge connected. In this section we present an algorithm that produces a convex partition

of the free space between disjoint convex polygonal obstacles, with a 2-edge connected

dual graph. We will start from an arbitrary STRAIGHT-FORWARD convex partition, and

apply a sequence of local modifications, if necessary, until the dual graph becomes 2-edge

connected. Our local modifications will not change the number of cells. We define a class

of convex partitions (DIRECTED-FOREST) that includes all STRAIGHT-FORWARD convex

partitions and is closed under the local modifications we propose.

The basis for local modifications is a simple idea. In a STRAIGHT-FORWARD con-

vex partition, extensions are created sequentially (each vertex emits a directed ray) and

whenever two directed extensions meet at a Steiner vertex v (defined below), the earlier

extension continues in its original direction, and the later one terminates. Here, however,

we allow the two directed extensions to merge and continue as one edge in any direction

that maintains the convexity of all the angles incident to v (Fig. 5.4(a)). Merged extensions

provide considerable flexibility.

Definition 5.1 For a given set S of disjoint obstacles, the class of DIRECTED-FOREST

convex partitions is defined as follows: The free space R2 \ (
⋃
S) is partitioned into con-

vex cells by directed edges (including directed rays going to infinity). Each endpoint of a
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(a) (b)

q
q

Figure 5.4: (a) Two incoming extensions meet at q. (b) The merged extension may continue
in any direction within the opposing wedge.

directed edge is either a vertex of S or a Steiner vertex (lying in the interior of the free

space, or on the boundary of an obstacle). We require that

• every vertex in V (a vertex of an obstacle) emits exactly one outgoing edge;

• every Steiner point in the interior of the free space is incident to exactly one outgoing

edge;

• no Steiner point on a convex obstacle is incident to any outgoing edge; and

• the directed edges do not form a cycle.

It is easy to see that a STRAIGHT-FORWARD convex partition belongs to the class of

DIRECTED-FOREST convex partitions.

Proposition 5.1 There is an obstacle vertex on the boundary of every cell.

Proof. Consider a directed edge on the boundary of a cell. Follow directed edges in reverse

orientation along the boundary. Since directed edges cannot form a cycle, and the out-

degree of every Steiner vertex is at most one, there must be at least one obstacle vertex on

the boundary of the cell. 2

In a DIRECTED-FOREST, we can also follow directed edges (in forward direction) from

any vertex in V to an obstacle or to infinity, since the out-degree of each vertex is always
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exactly one, unless the vertex lies on the boundary of an obstacle or at infinity. For con-

nected components of extensions (directed edges), we use the concept of extension trees

introduced by Bose et al. [19].

(a) (b) (c)

γ
v

r rr

v′

Figure 5.5: (a) A convex partition formed by directed line segments. The extended path
γ originates at v and terminates at r, two points on the same obstacle. The edge at v is a
bridge in the dual graph, and γ is called forbidden. (b) A single extended-path emitted by
v′. (c) A single extension tree rooted at r.

Definition 5.2 The extended-path of a vertex v ∈ V is a directed path along directed

edges starting from v and ending on an obstacle or at infinity. Its (relative) interior is

disjoint from all obstacles.

Definition 5.3 An extension tree is the union of all extended-paths that end at the same

point, which is called the root of the extension tree. The size of an extension tree is the

number of extended-paths included in the tree.

A vertex v ∈ V may be incident to more than two cells. It is incident to ` + 2 cells

if it is incident to ` incoming edges. In our construction, we let σ assign a vertex v of

an obstacle to the two cells adjacent to the unique outgoing edge incident to v. With this

convention, a bridge in the dual graphsD(C, σ) can be characterized by a forbidden pattern

(see Fig. 5.5(a)).

Definition 5.4 An extended-path starting at v ∈ V is called forbidden if it ends at the ob-

stacle incident to v. A forbidden extended-path, together with the boundary of the incident

obstacle, forms a simple closed curve, which encloses a bounded region.
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Lemma 5.1 A dual graph D(C, σ) of a DIRECTED-FOREST convex partition is 2-edge

connected iff no vertex v ∈ V emits a forbidden extended-path.

Proof. First we show that a forbidden extended-path implies a bridge in the dual graph.

Let γ be a forbidden extended-path, starting from vertex v of an obstacle, and ending at

point r on the boundary of the same obstacle (see Figures 5.5(a), 5.6, 5.7). Extended-path

γ together with the obstacle boundary between v and r forms a simple closed curve and

partitions the free space into two regions R1 and R2, each of which is the union of some

convex cells. Let V1 and V2 be the set of nodes in the dual graph corresponding to the

convex cells in these regions, respectively. Point v is the only obstacle vertex along γ. If

an edge e of the dual graph connects some node in V1 to a node in V2, then e corresponds

to a vertex of an obstacle whose unique outgoing edge is part of γ. But v is the only such

vertex. This implies that there is a bridge in the dual graph, whose removal disconnects V1

from V2.

Next we show that a bridge in the dual graph implies a forbidden extended-path. As-

sume that V1 and V2 form a partition of V in D(C, σ) such that V1 and V2 are connected

by a bridge e. The two node sets correspond to two regions, R1 and R2, in the free space.

Let β be boundary separating the two regions. We first show that one of these regions is

bounded.

Suppose for contradiction that both regions R1 and R2 are unbounded. Note that β

must contain at least two directed edges of the convex partition that go to infinity. Since

every Steiner vertex in the interior of the free space has an outgoing edge, β must contain

at least two extended-paths. Hence β contains at least two vertices of some obstacles, and

the adjacent outgoing edges. Thus there are at least two edges in the dual graph between

the node sets V1 and V2, therefore, e is not a bridge.

Now assume without loss of generality that the region R1 is bounded, thus the separat-

ing boundary β is a closed curve. If we pick an arbitrary directed extension along β and

follow β in reverse direction, then we arrive to a segment endpoint v. Assume that v cor-

responds to the bridge e. Then we arrive to the same segment endpoint v starting from any

directed extension along β. This means that all directed edges along β are in the extended-

path of v. Since β is a closed curve, the extended-path of v must end on the boundary of

the obstacle incident to v, thus it is a forbidden extended-path. 2
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Corollary 5.1 An extension tree with its root at infinity cannot contain a forbidden extended-

path.

5.5.1 Convex Partitioning Algorithm

We construct a convex partition as follows. We first create a STRAIGHT-FORWARD convex

partition, which is in the class of DIRECTED-FOREST convex partitions. Let T denote the

set of extension trees. Each extension tree may contain one or more forbidden extended-

paths. If an extension tree t ∈ T contains a forbidden extended-path γ, then we continu-

ously deform t with a sequence of local modifications until a vertex of an obstacle collides

with the relative interior of t (subroutine FLEXTREE(t)). At that time, t splits into two

extension trees t1 and t2 such that each of these two trees is strictly smaller in size than t.

An extension tree of size one is a straight-line extension, and cannot contain a forbidden

extended-path. Since the number of extended-paths is fixed (equal to the number of vertices

in V ), eventually no extension tree contains any forbidden extended-path, and we obtain a

convex partition whose dual graph has no bridges by Lemma 5.1.

For a finite set S of disjoint convex polygonal obstacles in the plane, the main loop of

our partition algorithm is CREATECONVEXPARTITION(S). The algorithm calls the sub-

routine FLEXTREE(t) for every extension tree that contains a forbidden extended-path,

which in turn calls subroutine EXPAND(t, γ) for a forbidden extended path γ, as described

in Section 5.5.2.

Algorithm 6 CREATECONVEXPARTITION(S)

Given: A set S of disjoint convex polygons having n vertices in total.
Create a STRAIGHT-FORWARD convex partition.
Let T be set of extension trees in the partition.
while there is an extension tree t ∈ T containing a forbidden extended-path do

FLEXTREE(t)
end while

85



www.manaraa.com

Algorithm 7 FLEXTREE(t)

Let γ be a forbidden extended-path contained in t.
while γ is still a forbidden extended-path do

(t, γ) = EXPAND(t, γ)
end while
Let v′ ∈ V be a vertex of an obstacle where the extended-path γ now terminates.
Split tree t into two extension trees t1 and t2. Subtree t1 consists of the extended-paths
that terminate at the original endpoint of γ. Subtree t2 consists of the extended-paths
that now terminate at v′.

5.5.2 Local Modifications: EXPAND(t, γ)

Consider a forbidden extended-path γ contained in an extension tree t ∈ T . Path γ starts

from a vertex v ∈ V , and ends at a root r lying on the boundary of the obstacle s ∈ S

incident to v. Path γ together with the portion of the boundary of s between v and r bounds

a simple polygon P (does not contain s in its interior).

(a) (b) (c)

γ
v

r

γ

r

t

v′
t1

t2

r v′
t1

t2

v′′

t3

s s s

Figure 5.6: (a) An extension tree t with a forbidden extended-path. (b) After deforming
and splitting t into two trees, t2 contains a forbidden extended-path. (c) Deforming and
splitting t2 eliminates all forbidden extended-paths.

We continuously deform the boundary of P , together with extension tree t, until it

collides with a new vertex v′ ∈ V that is not incident to s. Similar continuous motion

arguments have been used for proving combinatorial properties in [9, 13, 57]. We deform P

in a sequence of local modifications, or steps. Each step involves two adjacent edges of the

polygon P . The vertices of P are v, r and the Steiner points where P has an interior angle

different from 180◦. Steiner vertices where P has an interior angle of 180◦ are considered
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r
`

v

x

y

x′

P

s

z

Figure 5.7: Polygon P corresponding to a forbidden extended-path v, . . . , r; convex vertex
x; inflexible edges xy and xz; reflex vertex x′.

interior points of edges of P . Each step of the deformation will (i) expand the interior of the

polygon P , (ii) keep r a vertex of P , and (iii) maintain a valid DIRECTED-FOREST convex

partition. The third condition implies, in particular, that every cell has to remain convex.

Also, since the interior of P is expanding, some cells in the exterior of P (and adjacent to

P ) will shrink—we ensure that all cells adjacent to P have a nonempty interior.

Where to perform a local deformation step? The polygon P is modified either at a

convex vertex x on the convex hull of P or at a reflex vertex x′ (with special properties).

These vertices x and x′ are calculated at the start of each local deformation step.

Consider the edge of the obstacle s that is incident to the point v, and is part of the

boundary of the polygon P . Let ` be the supporting line through this edge. The obstacle s

lies completely in one of the closed halfplanes bounded by ` (since s is convex). Let x be a

vertex of P furthest away from the supporting line ` in the other halfplane. Clearly, x is a

convex vertex of P (interior angle less than 180◦), otherwise, it will not be the furthest. The

goal is to expand the polygon P by modifying the edges xy and xz incident to x. Imagine

grabbing the vertex x and pulling it away from the polygon P stretching the edges xy and

xz. But this expansion can only occur if none the edges xy and xz are inflexible. An edge

of P is inflexible if there is a convex cell in the interior of P that has an angle of 180◦ at
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one of the two endpoints of the edge. Since x is a convex vertex, the edge xy or xz can be

inflexible iff some convex cell has an angle of 180◦ at y or z, respectively (Fig. 5.7).

In the case when at least one of the edges incident to x is inflexible, local modification

of P takes place at a reflex vertex x′. Assume w.l.o.g xy is inflexible. Then y must be a

reflex vertex of P (every inflexible edge of P is incident to a reflex vertex). Starting with

the reflex vertex y, move along the boundary of P in the direction away from x. Let x′ be

the first reflex vertex encountered such that one of the edges incident to x′ is flexible. It is

not difficult to verify that there is always one such vertex x′ (Proposition 5.2).

Proposition 5.2 If x is incident to an inflexible edge, then there is a reflex polygonal chain

along P of length ≥ 1 that includes this inflexible edge and terminates at a reflex vertex x′

of P that has exactly one flexible edge. 2

How to perform a local deformation step? Local deformation of P takes place either at a

convex vertex x (Case 1 and 2), or at a reflex vertex x′ (Case 3). Since the number of cells

in the convex partition must remain the same, it is necessary to check for the collapse of a

cell in the exterior of P (Case 4).

Case 1. Both edges xy and xz of P incident to x are flexible, and there is an edge wx in

the opposing wedge of ∠yxz. Fig. 5.8(a). Then continuously move x along xw towards w

while stretching the edges xy and xz.

Case 2. Both edges xy and xz of P incident to x are flexible, and there is no edge in the

opposing wedge of ∠yxz. Fig. 5.8(b). Let `x be a line parallel to ` passing through x,

and let w be a neighbor of x on the opposite side of `x. Assume that z and w are on the

same side of the angle bisector of ∠yxz. Then split x into two vertices x1 and x2. Now x1

remains fixed at x and x2 moves continuously along xw towards w stretching the edge x2z.

Case 3. At least one edge incident to x is inflexible; then there is a reflex vertex x′ such

that edge x′z′ is inflexible, and x′y′ is flexible. Fig. 5.8(c). Continuously move x′ along

x′z′ towards z′ while stretching the edge x′y′.

Case 4. A further ε > 0 stretching of some edge ab to position ab′, where vertex b con-

tinuously moves along segment bb′, would collapse a cell in the exterior of P . Fig. 5.8(d).

Then the triangle ∆abb′ lies in the free space and ab′ contains a side of an obstacle s′ 6= s
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(cf. Proposition 5.3 below). Let v′ ∈ ab′ be the vertex of this obstacle that lies closer to a.

Stretch edge ab of P into the path (a, v′, b).

P P

P

v

v

v
z

r

P

v

r

x

y z y

` `

w

w
x

`x

x′

a

b

b′

v′

s

s′

(a) (b)

(c)

P P

P

v v

vr

(d)

x

z y z y

` `

w
w

x1

x2

x′z′

y′

z′

y′

P

v

r a

b

b′

v′

s

s′

Figure 5.8: Three local operations: (a) Convex vertex x, incoming edge w in the wedge.

(b) Convex vertex x, no incoming edge in the wedge. (c) Reflex vertex x. (d) The case of

a collapsing cell.
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When to stop a local deformation step? Continuously deform one or two edges of P , at

either a convex vertex x or a reflex vertex x′, until one of the following conditions occurs:

• an angle of a convex cell interior to P or an angle of P becomes 180◦;

• two vertices of the polygon P collide;

• one of the edges of P collides either in its interior or at its endpoint with a vertex v

of an obstacle;

• a further ε > 0 deformation would collapse a cell in the exterior of P .

Since a local deformation step does not always terminate in a collision with an obstacle

vertex v′, the subroutine FLEXTREE(t) decides at the end of each step whether more local

modifications are needed.

5.5.3 Correctness of the Algorithm

We prove that we can eliminate all forbidden extended-paths and obtain a DIRECTED-

FOREST convex partition with a 2-edge connected dual graph. Let t be a extension tree,

containing a forbidden extended-path γ starting from v ∈ V and ending at root r. First we

show that in EXPAND(t, γ), the four cases cover all possibilities.

Proposition 5.3 If a further ε > 0 deformation of some edge ab to position ab′, where b

continuously moves along segment bb′, would collapse a cell in the exterior of P , then the

triangle ∆abb′ lies in the free space and segment ab′ contains a side of an obstacle s′ 6= s.

Proof. A continuous deformation of ab to ab′, where b′ moves along segment bb′, sweeps

triangle ∆abb′. Hence the interior of this triangle cannot contain any obstacle. Assume

that cell c ∈ C would collapse if ab reaches position ab′. By Proposition 5.1, there is a

vertex v′ ∈ V on the boundary of cell c, and so v′ must lie on the segment ab′. Note that

no extended-path can reach v′ from the triangle ∆abb′. Hence the only two edges along the

boundary of c incident to v′ are the extensions emitted by a side of the obstacle s′ containing

v′. It follows that segment ab′ contains a side of obstacle s′.
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Figure 5.9: Polygon P is continuously deformed until an obstacle vertex appears on the
boundary.

It remains to be shown that s′ 6= s (that is, v and v′ are vertices of distinct obstacles).

In Case 1–2, b = x is the convex vertex of P that lies furthest from the supporting line `,

and b moves continuously away from `. Therefore both b and b′ are in the open halfplane

bounded by `, and so edge ab′ cannot contain an edge of the obstacle s. In Case 3, b = x′ is

a reflex vertex of P and it moves continuously along a reflex chain along the boundary of

P between x′ and x (c.f., Proposition 5.2). Since x is the furthest point from the supporting

line ` of s, the reflex chain between x and x′ is separated from s by a line. Segment ab′ lies

in the convex hull of the reflex chain, and so it cannot contain a side of s. 2

Proposition 5.4 Subroutine EXPAND(t, γ) (i) increases the interior of polygon P , (ii)

keeps r as a vertex of P , and (iii) maintains a valid DIRECTED-FOREST convex parti-

tion. Furthermore, EXPAND(t, γ) modifies directed edges of the extension tree t only. 2
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Lemma 5.2 The subroutine FLEXTREE(t) modifies an extension tree t ∈ T , with a for-

bidden extended-path γ, in a finite number of EXPAND(t, γ) steps until an obstacle vertex

v′ ∈ V appears along γ.

Proof. FLEXTREE(t) repeatedly calls EXPAND(t, γ) for a forbidden extended-path γ. We

associate an integer count(t, γ) to t and γ and show that EXPAND(t, γ) either deforms

t to collide with an obstacle s 6= s′ or count(t, γ) strictly decreases. This implies that

FLEXTREE(t) terminates in a finite number of steps.

Let k denote the size of t (i.e., the number of extended-paths in t). Then t has at most

k − 1 Steiner vertices in the free space, since each corresponds to the merging of two or

more extended-paths. Let kex be the number of Steiner vertices of t in the exterior of P , let

rP be the number of vertices of P , let fP be the number of flexible edges of P , and let mP

be the number of directed edges in t that are incident to vertex x of P from the exterior of

P . Then let count(t, γ) = 2k · kex + rP + fP + 2mP . Recall that a Steiner vertex where

P has an internal angle of 180◦ is not a vertex of P . The vertices of P are v, r and Steiner

vertices in the interior of the free space where P has a non-straight internal angle, hence

rp, fP ,mP < k.

Consider a sequence of EXPAND(t, γ) steps where t does not collide with an obstacle.

Since in Case 4, a vertex v′ ∈ V appears in the relative interior of t, we may assume that

only Case 1–3 are applied. Case 1–3 expand the interior of polygon P , and the directed

edges in the exterior of P are not deformed. Hence kex never increases, and it decreases if

P expands and reaches a Steiner point in the exterior of P .

Now consider a sequence of EXPAND(t, γ) steps where kex remains fixed and Case 4

does not apply. Then mP can only decrease in Case 1–3. Case 2 initially introduces a

new edge of P (increasing rP and fP by one each) but it also decreases mP by at least

one. Case 1 and 3 never increase rP or fP . In Case 1–3, the deformation step terminates

when an interior angle of a convex cell within P becomes 180◦ (and an edge becomes

inflexible, decreasing fP ) or an interior angle of P becomes 180◦ (and P loses a vertex,

decreasing rP ). In both events, rP + fP decreases by at least one. Therefore, count(t, γ) =

2k · kex + rP + fP + 2mP strictly decreases in every step EXPAND(t, γ), until the relative

interior of t collides with an obstacle. 2
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Theorem 5.2 For every finite set of disjoint convex polygonal obstacles in the plane, there

is a convex partition and an assignment σ such that the dual graph D(C, σ) is 2-edge

connected. For k convex polygonal obstacles with a total of n vertices, the convex partition

consists of n− k + 1 convex cells.

Proof. The convex partitioning algorithm first creates a STRAIGHT-FORWARD convex par-

tition for the given set of disjoint polygonal obstacles. For k disjoint obstacles with a total

of n vertices, it consists of n−k+1 convex cells. The extensions in the convex partition can

be represented as a set of extension trees T . We showed in Lemma 5.1 that there is a bridge

in the dual graph iff some extension tree contains a forbidden extended-path. Subroutine

FLEXTREE(t) splits every extension tree t containing a forbidden extended-path into two

smaller trees. (The extended-paths in t are distributed between the two resultant trees.)

An extension tree that consists of a single extended-path is a straight-line extension, and

cannot be forbidden (a straight-line extension emitted from a vertex of an obstacle cannot

hit the same obstacle, since each obstacle is convex.) Therefore, after at most |V |
2

calls to

FLEXTREE(t), no extended-path is forbidden, and so the dual graph of the convex partition

is 2-edge connected. 2

Corollary 5.2 For every finite set of disjoint line segments in the plane, there is a convex

partition and an assignment σ such that the dual graph D(C, σ) is 2-edge connected. For

n disjoint line segments, the convex partition consists of n+ 1 convex cells.

5.6 Conclusion

We have shown that for every finite set of convex polygonal obstacles, there is a convex

partition with a 2-edge connected dual graph. Such a dual graph can be used in the design

of fault-tolerant wireless or sensor networks in the presence of polygonal obstacles. We

have presented a polynomial time algorithm for constructing the dual graph. Our algorithm

can easily be implemented in O(n3) time for obstacles with a total of n vertices, however

we believe that the runtime can be substantially reduced by a more careful analysis and

by using specialized data structures. For comparison, for any given permutation π the

STRAIGHT-FORWARD convex partition Cπ can be computed in O(n lg2 n) time [50], and
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if the permutation π is not specified, then a STRAIGHT-FORWARD convex partition can be

computed in O(n lg n) time by a sweep-line algorithm (in a left-to-right sweep followed by

a right-to-left sweep).

The question regarding the existence of convex partitions whose dual graph can be

edge-partitioned into two disjoint spanning trees remains open. An affirmative answer to

this question will settle the disjoint compatible matching conjecture by Aichholzer et al..

An interesting related problem is whether there always exists a convex partition that has a

bi-connected (2-vertex connected) dual graph.

Tan et al. [70] computes STRAIGHT-FORWARD convex partition in a distributed man-

ner, which makes the algorithm suitable for sensor networks. However, it remains to be

seen whether the algorithm to produce convex partitions with 2-edge connected dual graphs

presented in this paper could be modified to work in a distributed manner. A related ques-

tion is how to support efficient insertion and deletion of convex polygonal obstacles. In

other words: how local the local modifications really are?
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Chapter 6

Conclusion

In thesis we bridge the gap between lower and upper bounds of simplex range emptiness

queries by proving lower bounds in the partition graph model. The partition graph model

covers data structures that recursively partition the space e.g. data structures based on the

simplicial partition trees. Since geometric partitioning is a very important technique for

building data structures, these lower bounds apply to a very broad class of data structures.

The lower bounds are very severe e.g. a linear-storage (O(n)) data structure for simplex

emptiness on a planar point set of 1 trillion points must spend 1 million units (Ω(
√
n)) of

time answering an emptiness query. If there is an algorithm/application which generates a

large number of such queries, Ω(
√
n) query time will result in a severe bottleneck. To make

things worse, simplex emptiness reduces to a host of geometric problems, thus implying

lower bounds for these problems as well.

However, we can turn this argument on his head: if there is an algorithm generating

large number of queries, may be there is an opportunity to exploit the structure in the

query sequence. Thus instead of designing general data structures that do not rely on the

peculiarities of a particular algorithm and are useful in a variety of applications, we need

to construct data structures specific to the particular algorithm/application. In this thesis

we improved the performance of Paterson and Yao’s classical randomized auto-partition

algorithm by developing a new data structure for ray shooting-and-insertion in the free

space between disjoint polygonal obstacles. The idea of creating specialized data structures

is not new; one well-known example is that of using Fibonacci heaps for Prim’s minimum
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spanning tree algorithm. However, the idea needs to be pursued more often for geometric

algorithms especially when the algorithmic performance is critical such as in computer

graphics, geographic information system, and computer-aided design and engineering. We

hope this thesis succeeds in drawing the attention of computational geometry community

towards the need for creating application-specific data structures.
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